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Abstract

Estimating counterfactual outcomes from observational data
is critical for informed decision-making in domains such as
personalized marketing, healthcare, and online platforms. In
these contexts, decision processes frequently involve high-
dimensional combinatorial interventions, including bundled
channel allocation or product set recommendations. For such
scenarios, both causal assessment of historical strategies and
optimization of novel interventions necessitate models ca-
pable of extrapolating to intervention combinations that are
underrepresented or entirely absent in observational data.
Specifically, in digital marketing, companies often need to
evaluate new combinations of channels or target emerging
user segments that have not been previously exposed. Fur-
thermore, inherent biases in observational datasets, stemming
from prior allocation policies and targeting mechanisms, fur-
ther aggravate coverage sparsity and compromise off-support
counterfactual inference. In this work, we propose Dual-
Source Counterfactual Fusion (DSCF), a scalable framework
that enables accurate counterfactual prediction under high-
dimensional combinatorial interventions, with improved ro-
bustness to confounding bias. DSCF jointly models observa-
tional data and proxy counterfactual samples through a dual-
head mixture-of-experts architecture and domain-guided fu-
sion. This design effectively balances bias reduction and in-
formation diversity while enabling adaptive generalization to
counterfactual inputs. Extensive experiments on both syn-
thetic and semi-synthetic datasets demonstrate the effective-
ness and robustness of DSCF across diverse scenarios.

Introduction
Understanding the joint effects of multiple interdependent
interventions is increasingly critical to decision-making in
domains such as online platforms and digital marketing (Yao
et al. 2022). Figure 1 illustrates a typical digital marketing
scenario: advertisers determine exposure strategies for each
user based on individual characteristics (e.g., demographics
and behavioral signals), which in turn influence the set of
marketing channels a user is exposed to. These combina-
tions, together with user intent, influence downstream busi-
ness outcomes such as conversion rate and long-term re-
tention. To enable fine-grained business analysis and future
strategic optimization, a core counterfactual question is: how
would these outcomes change if we assigned the user a dif-
ferent combination of channels? Modeling each channel in

Figure 1: Illustration of key counterfactual questions and
support mismatch in high-dimensional intervention settings.

isolation fails to capture the synergistic or antagonistic ef-
fects that arise from their co-occurrence, necessitating a shift
from single-intervention analysis to combinatorial counter-
factual modeling.

However, historical observational data only documents
outcomes for a limited and biased subset of intervention
combinations, specifically those deployed under prior al-
location policies that systematically prioritize safe, high-
performing strategies aligned with historically targeted user
segments. This policy-driven selection mechanism results
in systematic selection bias and coverage sparsity. Fur-
thermore, the inherent low-rank structure of user popula-
tions exacerbates this challenge: demographically or behav-
iorally similar users tend to receive homogenized treatments,
leaving extensive regions of the combinatorial intervention
space underexplored. Under such conditions, direct empiri-
cal learning from observational data is insufficient to support
forward-looking strategy development (e.g., targeting novel
user cohorts, reconfiguring campaign bundles, or simulat-
ing budget reallocations). Without the capacity for out-of-
support generalization, such models are inherently incapable
of providing actionable insights for future decision-making.

This need for off-support counterfactual generalization
under high-dimensional, biased conditions presents a criti-
cal yet underexplored challenge, particularly in internet ap-
plications such as high-value action discovery (M-Squared
2025), multi-touch attribution (Ren et al. 2018; Arava et al.
2018; Yao et al. 2022), and ad optimization (Shi et al. 2024).
Existing methods (Wang et al. 2024) are effective only for
low-dimensional combinatorial interventions and fall short



in real-world applications, either due to poor off-support
generalization or restrictive assumptions.

To mitigate these limitations, we propose Dual-Source
Counterfactual Fusion (DSCF), a scalable framework
for accurate and robust counterfactual prediction under
support-sparse, high-dimensional combinatorial interven-
tions. DSCF seeks to combine the low-bias nature of proxy
counterfactual samples (obtained via matching) with the
greater informational richness of observational data (com-
pared to proxy data). To this end, it jointly learns from both
domains through a dual-head Multi-gate Mixture-of-Experts
(MMoE) (Ma et al. 2018) architecture, incorporating an in-
dependently trained domain classifier to enable dynamic,
input-dependent fusion for improved counterfactual adapta-
tion. Throughout the pipeline, DSCF imposes minimal as-
sumptions on data distribution and modality, making it well-
suited for industrial-scale applications in real-world settings.

We evaluate DSCF on both synthetic and semi-synthetic
benchmarks. On synthetic data, it consistently achieves sub-
stantial improvements across diverse experimental configu-
rations. On semi-synthetic datasets constructed from real-
world user logs, it reduces RMSE and MAE by 32.1% and
48.3%, respectively, compared to the state-of-the-art meth-
ods.

Related Work
Classical ITE extensions. Traditional ITE methods, such
as sample reweighting (Arbour, Dimmery, and Sondhi 2021;
Chesnaye et al. 2022), matching (Stuart 2010; Schwab, Lin-
hardt, and Karlen 2018; Wu et al. 2023), and representation
learning (Shalit, Johansson, and Sontag 2017; Shi, Blei, and
Veitch 2019), aim to adjust for confounding by aligning co-
variate distributions across treatment groups. Some efforts
extend these methods to combinatorial settings by treating
covariates and interventions as a joint feature space and ap-
plying ITE-style adjustment to the joint observational dis-
tribution. However, the exponentially large treatment space
leads to severe support sparsity and renders direct adjust-
ment ineffective. Reweighting-based methods (Zou et al.
2020) merely rescale samples within the observed support
and cannot extrapolate beyond it (Cortes, Mansour, and
Mohri 2010), while matching tends to over sample a small
subset of observational samples, reducing diversity and in-
creasing variance. Representation learning methods (Tani-
moto et al. 2021) often assume invariant treatment effects
across domains, which is an unrealistic premise in tasks like
CTR or LTV prediction where effects are highly context-
dependent. Moreover, under sparse observational coverage,
the learned representations may become non-invertible (Jo-
hansson, Sontag, and Ranganath 2019), resulting in irre-
versible information loss and degraded estimation quality.

Advanced modeling paradigms. Recent methods tai-
lored to combinatorial interventions include counterfac-
tual data augmentation (Qian, Curth, and van der Schaar
2021), low-rank modeling (Agarwal, Agarwal, and Vijayku-
mar 2023), and meta-learning (Chauhan et al. 2025). While
effective in constrained settings, these approaches often
rely on strong structural assumptions or incur significant

Figure 2: Empirical distributions of observed, counterfac-
tual, matched, and reweighted sample features over a latent
one-dimensional space.

computational overhead, limiting their scalability to high-
dimensional, support-sparse regimes. Data augmentation
methods require expanding the training set by a factor of
the intervention dimension and fitting a separate predictor
for each intervention, incurring substantial computational
costs and storage overhead. Low-rank models capture only
coarse structures and fail to represent high-order interactions
prevalent in complex systems, limiting their expressiveness.
While meta-learning approaches offer adaptability, their re-
liance on nested optimization and heavily parameterized ar-
chitectures hinders scalability and applicability in real-world
high-dimensional settings.

Problem Statement
In combinatorial counterfactual prediction, the goal is to pre-
dict outcomes under different combinations of interventions
and contexts, based on observational data. The observational
data is denoted as Dobs = {(xi, ti, yi)}ni=1, where xi ∈ Rd

represents covariates (e.g., user demographics), ti ∈ {0, 1}p
represents treatment assignments, and yi ∈ R is the ob-
served outcome (e.g., conversion rate). Each element of ti,
referred to as a cause, indicates the presence or absence of
a specific intervention (such as whether a particular market-
ing channel was accessed). The full vector ti, consisting of
all causes, represents the treatment, the joint assignment of
all binary interventions applied to a given unit. We aim to
learn a hypothesis fθ : X × T → R which predicts the out-
come y based on both covariate x and treatment t. We use
binary treatments for clarity, although the method could be
applied to more general intervention types, including dense
or categorical inputs.

Although the exact form of the counterfactual distribution
may vary across applications, eliminating confounding be-
tween covariates and causes remains a universal objective.
As a practical approximation, we adopt a factorized form
that assumes independence between covariates and causes.
Specifically, we aim to minimize the expected loss under
a factorized counterfactual distribution P (X)

∏p
i=1 P (T i):

EP (X)
∏p

i=1 P (T i) [L(fθ(X,T), y(X,T))] , where L(·, ·) is
the error function and y(·, ·) denotes the true outcome (Zou
et al. 2020). Given the combinatorial explosion of the inter-
vention space, the inherent bias in observational data, and
practical requirements for generalizing to off-support coun-
terfactual scenarios, we do not assume the positivity condi-
tion (Rosenbaum and Rubin 1983; Pearl 2010), which re-
quires every treatment to have a non-zero probability of be-
ing observed. Instead, we characterize distribution shift us-
ing sample-level distances.



Figure 3: Schematic illustration of how reweighting and
matching respond to support mismatch over the same space.

Figure 4: Illustration of the trade-off between unbiasedness
and information richness across training distributions.

Method
In this section, we first illustrate the distributional hetero-
geneity among observational, reweighted, and matched data
through a motivating example. This insight motivates the de-
sign of DSCF, which jointly learns from observational and
matched data to harness their complementary strengths. We
then introduce its core components and deployment details.

Limitations under Support Constraints
While matching and reweighting are widely used for coun-
terfactual prediction under combinatorial interventions, they
exhibit notable limitations when the positivity assumption
fails. We begin with an illustrative example in Figure 2.
Here, high-dimensional feature vectors (x, t) from real-
world user logs are projected onto a one-dimensional latent
axis α ∈ [0, 1], partitioned into 10 equal-width bins. The
y-axis reflects the sample proportion in each bin. Observa-
tional samples (drawn from the logged dataset directly) and
counterfactual samples (constructed by independently per-
muting the treatment columns of the observational data) ex-
hibit clear support mismatch: the former are concentrated in
[0.5, 1.0], while the latter are primarily located in [0.0, 0.5].

We next apply reweighting and matching to adjust the
observational training distribution toward the target coun-
terfactual distribution. As shown in Figure 3, reweighting
rescales in-support observational samples based on their
counterfactual likelihood but cannot, by design, extrapo-
late to out-of-support regions. Matching, by contrast, more
closely approximates the counterfactual distribution (see
Appendix A.5), but often over-concentrates in narrow re-
gions, such as collapsing all probability mass from [0.0, 0.5]
onto the single point α = 0.5.

To further assess these trade-offs, we evaluate obser-
vational, matched, and reweighted training distributions
along two axes: unbiasedness (measured by the negative
Wasserstein-1 distance to the counterfactual distribution)
and information richness (measured by kNN entropy). As
shown in Figure 4, matching achieves the lowest bias but
suffers from substantial entropy loss due to oversampling
a narrow subset of observational units, which is a conse-
quence of positivity violations. In contrast, observational
data, while biased, retains higher entropy, indicating greater
information diversity. Given that the potential outcome map-
ping (x, t) 7→ y is assumed invariant across domains, our
proposed method, DSCF, seeks to balance this trade-off by
jointly learning from both sources. It combines the bias re-
duction offered by matching with the informational diversity
of observational data to enable robust and accurate counter-
factual prediction.

Dual-Source Counterfactual Fusion
DSCF implements this dual-source strategy via a dual-head
Multi-gate Mixture-of-Experts (MMoE) (Ma et al. 2018) ar-
chitecture, with a domain classifier adaptively fusing the two
heads at inference time. An overview is shown in Figure5.

Proxy counterfactual dataset construction. To obtain
a training subset that is minimally biased with respect to
the target counterfactual distribution, we construct a proxy
counterfactual dataset via matching, aiming to approximate
the joint distribution over X × T as closely as possible.
We first independently shuffle each column of the observa-
tional treatment matrix and concatenate the result with the
original covariates, yielding feature vectors {(x̄i, t̄i)}ni=1 ∼
P (X)

∏p
i=1 P (T i). We then perform approximate nearest

neighbor (ANN) search, using the synthetic inputs (x̄, t̄)
to query the observational dataset Dobs in the joint feature
space X× T. For each query, we include the entire matched
observational sample (x′, t′, y′) in the proxy dataset Dpcf =

{(x̃i, t̃i, ỹi)}ni=1, so that the mapping (x, t) 7→ y remains
faithful to the original data-generating process. We em-
ploy industrial-grade ANN engines such as FAISS (Johnson,
Douze, and Jégou 2019) for scalable retrieval.

Dual-head joint learning with MMoE. We adopt MMoE
as our main prediction module, consisting of a shared set of
K expert networks {Ek(·)}Kk=1 and two task-specific gat-
ing networks, Gobs and Gpcf. The former facilitates cross-
domain knowledge sharing and supervision, while the latter
assigns each input to a soft combination of experts to enable
adaptive specialization. Let zobs = [x; t] and zpcf = [x̃; t̃]
denote the inputs for observational and proxy data, respec-
tively. Each gating network produces softmax-normalized
expert weights:

gobs = σ(Gobs(zobs)), gpcf = σ(Gpcf(zpcf)),

where σ(·) denotes the softmax activation. These weights
generate task-specific representations as weighted combina-
tions of expert outputs:

hobs =

K∑
k=1

gobs
k · Ek(zobs), hpcf =

K∑
k=1

gpcf
k · Ek(zpcf).



Figure 5: DSCF framework overview: data preparation, training, and inference. During inference, new samples drawn from the
same counterfactual distribution as in the data preparation stage are fed into the model for prediction.

Final predictions are produced by task-specific output tow-
ers:

ŷobs = oobs(h
obs), ŷpcf = opcf(h

pcf).

During training, ŷobs and ŷpcf are supervised using sam-
ples from Dobs and Dpcf, respectively.

Domain-guided prediction fusion. Given that observa-
tional and proxy counterfactual data originate from different
regions of the true counterfactual distribution, we introduce
a domain classifier to fuse the supervision signals provided
by both prediction heads. Specifically, the domain classifier
gcls(·) takes the combined input z = [x; t] and outputs a
confidence score: α = σ(gcls(z)), where σ(·) denotes the
sigmoid function and α ∈ [0, 1] represents the probability
that the input comes from the observational domain.

We assign domain labels L ∈ {0, 1}, with L = 1 for
observational samples and L = 0 for proxy counterfactu-
als. The classifier is trained independently using balanced
pairs (zobs, 1) and (zpcf, 0), ensuring no prior bias. We de-
liberately decouple domain classification from the MMoE
framework to prevent interference from the inductive biases
of the prediction heads through gradient propagation, and to
improve training stability. Importantly, to ensure semantic
alignment with the prediction heads, the domain classifier is
trained to distinguish Dobs from Dpcf, rather than from syn-
thetic counterfactuals with shuffled treatments. This design
yields coherent fusion behavior and is empirically validated
in ablation studies.

Training and inference. The MMoE-based prediction
module is optimized to minimize the expected supervised
loss over both data sources:

Lreg = E(x,t,y)∼Dobs

[
L(f̂obs(x, t), y)

]
+

E(x̃,t̃,ỹ)∼Dpcf

[
L(f̂pcf(x̃, t̃), ỹ)

]
,

where f̂obs and f̂pcf denote the two prediction routes within
the MMoE:

f̂obs(x, t) := oobs

(
K∑

k=1

gobsk · Ek([x; t])

)
,

f̂pcf(x̃, t̃) := opcf

(
K∑

k=1

gpcfk · Ek([x̃; t̃])

)
,

with Ek denoting the shared experts and gobsk , gpcfk the task-
specific gating weights. The domain classifier is trained in-
dependently using binary cross-entropy:

Lcls = E(z,L) [LCE(σ(gcls(z)), L)] ,

where LCE denotes the binary cross-entropy loss, z = [x; t],
and L ∈ {0, 1} indicates the domain label.

At inference, final predictions are fused using the domain
affinity:

f̂DSCF(x, t) = α(x, t)·f̂obs(x, t)+(1−α(x, t))·f̂pcf(x, t),
where α(x, t) := σ(gcls([x; t])) denotes the learned domain
affinity.

Theoretical Justification
We provide a theoretical justification for the DSCF frame-
work by analyzing its expected risk under the true counter-
factual distribution Pcf . Let f̂DSCF be the final fused predic-
tion and L : R× R → R≥0 a pointwise loss function.

Assumptions. We assume the loss function L(y, ŷ) is Lℓ-
Lipschitz in ŷ and bounded by BL. The true outcome func-
tion y(x, t) is Ly-Lipschitz, and both prediction heads f̂obs,
f̂pcf are Lf -Lipschitz and bounded in output by B. The do-
main classifier α(x, t) := σ(gcls([x; t])) has classification
error at most εcls over a balanced mixture of Dobs and Dpcf .
Theorem 1 (Counterfactual Risk Bound for DSCF). Let
Pcf denote the true counterfactual distribution and Ppcf the
proxy counterfactual distribution constructed via approx-
imate matching. Let Lobs(x, t) := L(f̂obs(x, t), y(x, t))
and Lpcf(x, t) := L(f̂pcf(x, t), y(x, t)). Then the expected
counterfactual risk satisfies:

E(x,t)∼Pcf

[
L
(
f̂DSCF(x, t), y(x, t)

)]
≤ E(x,t)∼Ppcf

[min {Lobs(x, t), Lpcf(x, t)}]︸ ︷︷ ︸
oracle prediction

+ εproxy︸ ︷︷ ︸
proxy bias

+ BL · εcls︸ ︷︷ ︸
fusion penalty

.

where εproxy := Lℓ(Ly + Lf ) · εANN, with εANN denoting
the maximal distance between a target counterfactual input
and its matched proxy neighbor. The fusion penalty term is
bounded by BL · εcls, where BL = 2LℓB.



A complete proof is given in Appendix A. Each term in the
bound reflects a key design component of DSCF:
• Oracle prediction: captures one key benefit of joint

training—by selecting the better head per input, DSCF
minimizes per-sample risk; additional gains from cross-
domain knowledge sharing are demonstrated empirically.

• Proxy bias: measures the discrepancy between Pcf and
Ppcf , bounded when ANN matching yields geometrically
close neighbors, even under positivity violations.

• Fusion penalty: accounts for domain classification error;
as εcls → 0, DSCF recovers oracle performance.

Remark 1 (Distributional Advantage over Reweighting).
Proxy matching achieves a strictly smaller 1-Wasserstein
distance to the true counterfactual distribution than per-
mutation weighting under typical positivity violations (Ap-
pendix A.5). This advantage stems from proxy matching’s
ability to directly minimize transport cost by approximat-
ing off-support mass through nearest neighbors. In contrast,
reweighting normalizes within-support density without ac-
cess to unseen regions, leading to larger distributional dis-
crepancy. Consequently, proxy matching induces a tighter
risk bound under standard Lipschitz conditions.

Experiments
We evaluate the proposed DSCF framework on both syn-
thetic and semi-synthetic datasets to assess its effectiveness
in counterfactual prediction under high-dimensional combi-
natorial interventions. We compare DSCF against represen-
tative baselines and analyze the impact of its core compo-
nents through detailed result analysis and ablation studies.

Experiment Setup
Baselines. We compare against the following baselines.
kNN is a non-parametric retrieval method. S-Learner and
NNpcf are supervised models trained on observational and
proxy counterfactual data, respectively. PW (Arbour, Dim-
mery, and Sondhi 2021) and VSR (Zou et al. 2020)
reweight observational samples to match the counterfactual
joint distribution over covariates and interventions. RM-
Net (Tanimoto et al. 2021) learns domain-invariant repre-
sentations. H-Learner (Chauhan et al. 2025) is a meta-
learning approach for multi-intervention, multi-outcome set-
tings, adapted here to single-outcome prediction. DSCF-Sep
is a variant of our model that disables joint training and di-
rectly fuses S-Learner and NNpcf using a domain classifier.
We exclude SCP (Qian, Curth, and van der Schaar 2021),
which requires p separate models and p-fold data augmen-
tation, making it impractical for high-dimensional combina-
torial interventions. We also exclude Synthetic Combina-
tions (SC) (Agarwal, Agarwal, and Vijaykumar 2023), as
its idealized setting does not align with our problem context,
resulting in poor performance. See Appendix B for details.

Implementation details. For fair comparison, the predic-
tive models used in S-Learner, NNpcf, PW, VSR, and RMNet
all adopt a 4-layer MLP with 128 hidden units per layer. In
DSCF, each expert shares the first two layers of this architec-
ture, with the number of experts set to 5. For H-Learner, the

hypernetwork width is set to 4p to ensure sufficient capac-
ity. All models are trained with the same number of epochs,
learning rate, optimizer, and batch size. See Appendix B for
additional details.

Evaluation metrics. We evaluate all models on a held-out
test set drawn from the factorized counterfactual distribu-
tion P (X)

∏p
i=1 P (T i). Metrics include Mean Absolute Er-

ror (MAE) and Root Mean Squared Error (RMSE), averaged
over 5 random seeds.

Synthetic Experiment on Fully Controlled Data
Dataset. We construct a synthetic dataset to evaluate
counterfactual prediction under high-dimensional combina-
torial interventions with fully controlled ground truth and
realistic data characteristics. Each sample consists of a co-
variate vector x ∈ Rd, a binary treatment vector t ∈ {0, 1}p,
and a real-valued outcome y ∈ R.

Covariates. To mimic the structure of real-world user data
(e.g., long-tailed, low-rank, and nonlinear), we first sample
a latent vector z ∈ Rr from a 50-component Gaussian Mix-
ture Model (GMM), where z ∼

∑50
k=1 πk · N (µk,Σk) and

πk ∝ 1/kα with α = 1.5, such that the cluster weights fol-
low a Zipf distribution. The latent vector is mapped to the
covariate space via a linear projection and nonlinear trans-
formation: x = Wupz+ ϵ, with ϵ ∼ N (0, 0.012I). For non-
linearity, the first third of features undergo tanh, and the
second third use exponential transformation.

Treatments. Each treatment dimension is assigned inde-
pendently using a confounded logistic model: P (T j = 1 |
x) = σ(γ · x⊤β(j) + ηj), where ηj ∼ N (0, 0.12) and γ
controls the confounding strength.

Outcomes. The outcome combines additive effects, in-
teraction terms, and nonlinearities: y = x⊤βx + t⊤βt +∑

(i,j)∈I
(
2 · titj · αij + 0.3 · ti · x⊤γij

)
+ 0.2 · ϕ(x, t) +

ϵ, with ϵ ∼ N (0, 0.12) and ϕ(x, t) = sin(x⊤wx) +
exp(−|t⊤wt|). The interaction set I includes ⌈c · p/2⌉ ran-
dom treatment pairs, with c = 5 controlling outcome com-
plexity.

We vary the number of treatments p ∈ {10, 20, 30} and
the confounding strength γ ∈ {0.1, 0.3, 0.5, 1.0}. Each
training set contains p×10,000 samples, and the correspond-
ing test set is drawn from the factorized counterfactual dis-
tribution with the same sample size.

Results. Table 1 reports RMSE and MAE of all methods
under varying numbers of intervention components and con-
founding strengths. Overall, DSCF achieves the best perfor-
mance on 21 out of 24 metrics, and ranks second on the re-
maining 3, consistently outperforming all baselines.

Under low confounding (γ = 0.1), H-Learner slightly
outperforms DSCF at p = 30, but as γ increases, it be-
comes unstable—its RMSE at p = 20 under γ = 0.3
and γ = 1.0 exceeds 15 and 40 respectively. In contrast,
DSCF remains robust and consistently outperforms its vari-
ants and all baselines. Notably, NNpcf often surpasses more
sophisticated alternatives such as PW, VSR, and RMNet.
This observation supports our hypothesis that reweighting
and representation-based methods become unreliable under



Table 1: Prediction errors (RMSE and MAE) on synthetic datasets. Best results are bolded, second-best are italicized.

Method γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0

RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ

p = 10

kNN 6.393± 0.000 2.559± 0.000 7.145± 0.000 3.038± 0.000 7.528± 0.000 3.498± 0.000 7.924± 0.000 4.217± 0.000
S-Learner 3.952± 0.160 1.434± 0.040 5.499± 0.013 1.834± 0.008 6.164± 0.057 2.197± 0.035 6.265± 0.042 2.574± 0.010
NNpcf 3.776± 0.172 1.385± 0.037 5.330± 0.020 1.632± 0.032 5.682± 0.022 1.776± 0.003 6.130± 0.055 2.109± 0.007
PW 4.339± 0.098 1.485± 0.015 5.641± 0.040 1.823± 0.017 5.979± 0.076 2.079± 0.023 6.359± 0.130 2.652± 0.061
VSR 4.072± 0.054 1.455± 0.004 5.625± 0.077 1.864± 0.008 6.009± 0.092 2.130± 0.018 6.301± 0.031 2.662± 0.009
RMNet 3.869± 0.077 1.437± 0.011 5.444± 0.086 1.827± 0.037 5.657± 0.037 2.133± 0.027 6.227± 0.017 2.622± 0.012
H-Learner 3.766± 0.027 1.121± 0.012 5.743± 0.244 1.663± 0.086 6.532± 0.023 1.856± 0.013 5.621± 0.015 2.165± 0.011
DSCF-Sep (ours) 3.761± 0.131 1.229± 0.024 5.329± 0.014 1.554± 0.018 5.790± 0.017 1.771± 0.011 6.082± 0.036 2.097± 0.001
DSCF (ours) 3.100± 0.026 0.832± 0.017 4.469± 0.152 1.132± 0.003 5.112± 0.200 1.350± 0.048 5.207± 0.066 1.640± 0.042

p = 20

kNN 6.287± 0.000 3.776± 0.000 7.364± 0.000 4.024± 0.000 7.011± 0.000 4.195± 0.000 8.895± 0.000 4.614± 0.000
S-Learner 4.459± 0.094 2.081± 0.037 6.423± 0.277 2.476± 0.079 5.588± 0.067 2.568± 0.074 7.849± 0.168 3.494± 0.008
NNpcf 4.580± 0.057 2.036± 0.031 6.178± 0.044 2.134± 0.018 5.642± 0.101 2.482± 0.109 7.393± 0.216 3.083± 0.061
PW 4.892± 0.154 1.998± 0.003 6.114± 0.133 2.393± 0.008 5.541± 0.356 2.692± 0.134 7.654± 0.242 3.302± 0.037
VSR 4.361± 0.092 2.016± 0.055 6.286± 0.248 2.348± 0.028 5.470± 0.020 2.609± 0.032 7.638± 0.126 3.250± 0.043
RMNet 4.827± 0.132 2.085± 0.027 6.129± 0.205 2.235± 0.015 5.488± 0.119 2.597± 0.036 7.742± 0.361 3.472± 0.126
H-Learner 3.469± 0.025 1.542± 0.016 15.165± 2.051 1.995± 0.003 6.756± 0.108 2.237± 0.027 41.361± 4.743 3.180± 0.012
DSCF-Sep (ours) 4.280± 0.061 1.756± 0.021 6.125± 0.125 2.010± 0.024 5.507± 0.084 2.383± 0.088 7.362± 0.130 3.066± 0.058
DSCF (ours) 3.725± 0.153 1.234± 0.058 5.462± 0.160 1.401± 0.118 4.673± 0.105 1.674± 0.055 6.640± 0.185 2.202± 0.193

p = 30

kNN 12.178± 0.000 8.574± 0.000 16.968± 0.000 11.545± 0.000 18.101± 0.000 12.588± 0.000 19.428± 0.000 13.811± 0.000
S-Learner 1.742± 0.019 1.273± 0.015 4.295± 0.087 2.713± 0.041 9.196± 0.047 5.436± 0.028 11.751± 0.117 7.532± 0.065
NNpcf 1.712± 0.013 1.258± 0.009 2.956± 0.007 1.985± 0.020 6.466± 0.031 4.108± 0.036 9.385± 0.014 6.002± 0.021
PW 1.841± 0.012 1.310± 0.008 3.948± 0.027 2.473± 0.027 7.814± 0.088 4.600± 0.041 11.226± 0.032 7.343± 0.016
VSR 1.794± 0.036 1.300± 0.028 4.683± 0.006 2.947± 0.015 7.256± 0.046 4.494± 0.029 11.369± 0.040 7.326± 0.023
RMNet 1.887± 0.054 1.361± 0.030 3.967± 0.040 2.568± 0.023 8.074± 0.109 4.788± 0.056 11.227± 0.047 7.263± 0.033
H-Learner 0.820± 0.036 0.599± 0.025 2.633± 0.026 1.701± 0.007 4.806± 0.060 3.115± 0.044 7.268± 0.016 5.057± 0.013
DSCF-Sep (ours) 1.527± 0.013 1.078± 0.003 2.931± 0.007 1.943± 0.019 6.463± 0.031 4.098± 0.036 9.384± 0.014 6.001± 0.021
DSCF (ours) 0.983± 0.045 0.705± 0.021 2.458± 0.265 1.517± 0.130 5.070± 0.242 2.919± 0.068 6.823± 0.218 4.389± 0.126

Table 2: Evaluation on the semi-synthetic dataset at two data
scales (n = 0.1M / 8M) using RMSE and MAE.

Method n = 0.1M n = 8M

RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ

kNN 1.794± 0.000 1.201± 0.000 1.232± 0.000 0.773± 0.000
S-Learner 0.945± 0.009 0.559± 0.003 0.604± 0.003 0.366± 0.003
NNpcf 0.870± 0.001 0.527± 0.002 0.519± 0.003 0.288± 0.002
PW 1.122± 0.008 0.586± 0.002 0.568± 0.002 0.346± 0.002
VSR 0.874± 0.003 0.530± 0.002 0.576± 0.006 0.355± 0.004
RMNet 0.936± 0.005 0.550± 0.002 0.581± 0.004 0.353± 0.004
H-Learner 3.890± 0.344 0.577± 0.021 0.732± 0.012 0.455± 0.004
DSCF-Sep (ours) 0.839± 0.001 0.509± 0.001 0.504± 0.004 0.279± 0.002
DSCF (ours) 0.668± 0.001 0.398± 0.001 0.353± 0.002 0.149± 0.002

positivity violations, where observational support is insuf-
ficient. In such cases, nearest neighbor retrieval from the
observational dataset—guided by permuted counterfactual
queries—offers a simple yet effective way to perceive in-
formation beyond the observational support. This empirical
pattern directly motivates our proxy construction strategy.

Finally, while the non-parametric kNN method is not
expected to perform competitively, it serves as a useful
reference for quantifying distributional shift. Its large and
steadily increasing error with growing p and γ reflects the
widening gap between the observational and counterfactual
distributions.

Semi-Synthetic Experiment on Real-World Data
Dataset. To evaluate DSCF on real-world data, we con-
struct a semi-synthetic dataset based on user logs from a
large-scale short-video platform. The covariates include user
demographics, while the interventions consist of 50 user-

content interaction variables encompassing binary indica-
tors, categorical features, and continuous scores (e.g., play
duration, clicks, shares). The prediction target is the change
in the user’s monthly lifetime.

To fully leverage real-world business data while retaining
full control over the outcome generation process, we adopt a
two-stage procedure—comprising (1) parameter estimation
and (2) sample generation—to construct semi-synthetic data
that: (i) preserves the empirical input distribution, (ii) cap-
tures realistic outcome variability (e.g., long-tailed behav-
ior), (iii) avoids model-induced bias, and (iv) maintains suf-
ficient functional complexity. Specifically, we first apply a
fixed, non-trainable two-layer MLP with Kaiming initializa-
tion to the concatenated input [x; t], producing latent repre-
sentations z = f([x; t]) ∈ Rk. We then estimate a symmet-
ric matrix M ∈ Rk×k by minimizing the squared error be-
tween the quadratic form z⊤Mz and the observed outcome
y across the observational dataset. After fixing the parame-
ters f(·) and M, we compute synthetic outcomes for both
original and permuted input pairs as y = z⊤Mz+ ϵ, where
ϵ ∼ N (0, 0.12).

To evaluate model performance under different data
regimes, we use the full dataset of 8 million samples for
training and testing, and additionally report results on a low-
resource subset containing 0.1 million samples.

Results. Table 2 reports the performance of all methods on
the semi-synthetic dataset. DSCF consistently outperforms
all baselines across both evaluation metrics and data scales.
The performance gap between DSCF and the second-best
method (NNpcf) widens with increased training data: under



Table 3: Ablation results across varying confounding strengths γ, with RMSE and MAE averaged over p ∈ {10, 20, 30}.

id Reg Data Reg Model Cls Data Output γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0
Dobs Dpcf Dobs Dpcf Dcf RMSE MAE RMSE MAE RMSE MAE RMSE MAE

(1) ✓ MLP 3.374 1.596 5.405 2.341 6.982 3.400 8.622 4.534
(2) ✓ MLP 3.356 1.560 4.821 1.917 5.930 2.789 7.636 3.731
(3) ✓ ✓ MLP×2 ✓ ✓ Reweighted 3.189 1.354 4.795 1.836 5.920 2.751 7.610 3.722
(4) ✓ ✓ HardShare Obs Head 3.183 1.371 4.762 1.824 6.239 2.812 7.688 3.701
(5) ✓ ✓ HardShare Pcf Head 3.161 1.345 4.714 1.819 6.210 2.770 7.737 3.696
(6) ✓ MMoE 2.988 1.155 4.604 1.725 5.695 2.475 7.516 3.688
(7) ✓ MMoE 2.782 1.097 4.473 1.559 5.431 2.253 6.995 3.211
(8) ✓ ✓ MMoE Obs Head 2.658 0.999 4.387 1.489 5.214 2.172 6.462 2.993
(9) ✓ ✓ MMoE Pcf Head 2.610 0.968 4.155 1.372 4.973 1.994 6.290 2.751
(10) ✓ ✓ MMoE avg 2.602 0.924 4.197 1.372 5.005 2.012 6.248 2.779
(11) ✓ ✓ MMoE ✓ ✓ Reweighted 2.603 0.931 4.159 1.358 4.962 1.986 6.236 2.747
(12) ✓ ✓ MMoE-lite ✓ ✓ Reweighted 2.664 0.881 4.318 1.402 5.430 2.175 6.714 3.025
(13) ✓ ✓ MMoE ✓ ✓ Reweighted 2.603 0.924 4.130 1.350 4.952 1.981 6.223 2.743

Figure 6: Model performance (MAE) across different values
of domain affinity α, with sample counts shown in blue bars.

the low-resource setting (n = 0.1M), DSCF reduces RMSE
and MAE by 23.3% and 24.3%, respectively; under the high-
resource setting (n = 8M), the improvements grow to 32.1%
(RMSE) and 48.3% (MAE). These results highlight DSCF’s
superior scalability and its enhanced ability to exploit large-
scale data.

Figure 6 reports the MAE of different methods across test
samples grouped by their domain affinity scores α, as pre-
dicted by the domain classifier. The vast majority of samples
fall into the counterfactual region (α ∈ [0.0, 0.1]), indicating
a pronounced distributional shift under high-dimensional
combinatorial interventions, where most target configura-
tions are rarely or never observed.

The methods exhibit a clear three-tier performance hier-
archy. Traditional approaches (e.g., S-Learner, PW, RMNet,
VSR) exhibit nearly indistinguishable performance across
bins but degrade sharply in low-α regions, revealing their
limitations under severe positivity violations. Proxy-based
methods (NNpcf, DSCF-Sep) improve upon this by lever-
aging matched samples. They achieve progressively lower
MAE compared to first-group methods as test samples move
closer to the counterfactual region, demonstrating a stronger
ability to capture off-support patterns. At the top tier, DSCF
consistently outperforms all baselines by a wide margin
across all affinity bins. The near-uniform MAE improve-
ments over second-tier methods across bins demonstrate that
joint training and a shared expert pool allow the observa-
tional branch to inject high-entropy, domain-specific infor-
mation into the proxy branch. Moreover, in observational re-
gions (high α), DSCF even surpasses the observational-only
S-Learner, due to the unbiased supervision from the proxy
branch, which in turn regularizes the observational head dur-
ing joint training.

Ablation Study
Table 3 presents ablations to isolate the contributions of
DSCF’s three key components: proxy counterfactual data,
multi-source joint training, and domain-guided fusion. Row
indices refer to those shown in the table. For more detailed
results and explanations, please refer to Appendix B.

Proxy data. Rows (1)(2) and (6)(7) reveal that training on
Dpcf alone already surpasses Dobs alone across all γ, con-
firming the strong signal supplied by our proxy construction.

Joint training. Even with a simple hard-shared backbone,
combining the two data sources (rows (4)(5)) yields sizeable
gains over single-source MLPs. Replacing hard sharing with
MMoE (rows (8)(9)) brings further improvement. Crucially,
under the same MMoE architecture, joint training (8)(9) out-
performs the single-source variants (6)(7), indicating that the
gains arise from leveraging complementary training distri-
butions, rather than from structural complexity alone.

Domain-guided fusion. Comparing rows (1)(2)(3) and
(10)(11)(13) demonstrates that adaptive weighting consis-
tently reduces both RMSE and MAE. The advantage widens
when α is small, i.e., when observational samples still oc-
cupy a non-negligible fraction of the counterfactual domain.
This highlights the fusion module’s ability to exploit com-
plementary signals in partially overlapping data.

Model capacity control. Row (12) reduces every hidden
dimension of the expert, gate, and tower networks in the
prediction module by half, yielding a parameter count com-
parable to the MLP baselines. Despite this, it still achieves
superior performance, confirming that our gains stem from
architectural design rather than over-parameterization.

Conclusion
We present DSCF, a principled and scalable framework
for counterfactual prediction under high-dimensional com-
binatorial interventions. By jointly leveraging observational
data and proxy counterfactual samples through a dual-head
MMoE architecture and domain-guided fusion, DSCF bal-
ances bias reduction and information richness without rely-
ing on strong structural assumptions. Theoretically, we es-
tablish a novel risk bound under the true counterfactual dis-
tribution, decomposing the estimation error into oracle pre-
diction, proxy bias, and fusion penalty, each of which is
tightly aligned with a corresponding model component. Em-
pirically, DSCF consistently outperforms existing methods
across synthetic and semi-synthetic benchmarks, demon-
strating superior robustness, scalability, and generalization.
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Appendix

A Detailed Theoretical Analysis
We provide a detailed proof of Theorem 1, which establishes an upper bound on the expected counterfactual risk of DSCF.
The bound decomposes into three interpretable components: an oracle prediction term capturing the per-sample minimum loss
between the two prediction heads, a proxy bias term measuring the approximation error between proxy and true counterfactual
distributions, and a fusion penalty due to domain classification inaccuracy.

To support this result, we begin by formalizing the learning setup and regularity assumptions. We then prove a proxy risk
approximation bound based on nearest-neighbor matching, followed by a detailed derivation of the main risk bound. Finally,
we provide a distributional comparison with permutation weighting (PW), showing that proxy matching induces a strictly lower
Wasserstein distance to the target counterfactual distribution under positivity violations, which leads to tighter lower bounds on
achievable risk.

A.1 Setup and Definitions
Let Pcf denote the target counterfactual distribution and Ppcf the proxy counterfactual distribution obtained via ANN matching.
The learned prediction function is a soft fusion:

f̂DSCF(x, t) := α(x, t) · f̂obs(x, t) + (1− α(x, t)) · f̂pcf(x, t),
where α(x, t) := σ(gcls([x; t])) ∈ [0, 1] is the learned domain affinity score. Let L : R × R → R≥0 denote a scalar loss
function, and define the pointwise losses:

Lobs(x, t) := L(f̂obs(x, t), y(x, t)),
Lpcf(x, t) := L(f̂pcf(x, t), y(x, t)),

LDSCF(x, t) := L(f̂DSCF(x, t), y(x, t)).

Our goal is to upper bound the population risk under the true counterfactual distribution:

RPcf
(f̂DSCF) := E(x,t)∼Pcf

[LDSCF(x, t)] .

A.2 Assumptions
We assume the following standard conditions:

Assumption A1 (Lipschitz Regularity). We assume the following Lipschitz conditions hold:
• The loss function L(y, ŷ) is Lℓ-Lipschitz in its second argument and bounded above by BL:

|L(y, ŷ1)− L(y, ŷ2)| ≤ Lℓ · |ŷ1 − ŷ2|, 0 ≤ L(y, ŷ) ≤ BL.

• The true outcome function y(x, t) is Ly-Lipschitz in its inputs:
|y(x, t)− y(x′, t′)| ≤ Ly · ∥(x, t)− (x′, t′)∥.

• The learned prediction function f(x, t) is Lf -Lipschitz in its inputs:
|f(x, t)− f(x′, t′)| ≤ Lf · ∥(x, t)− (x′, t′)∥.

Assumption A4 (Domain Classification Error). Define the domain label L(x, t) ∈ {0, 1}, where L = 1 if the sample is
from the observational domain and L = 0 if from the proxy domain. Let L̂(x, t) := 1[α(x, t) > 0.5]. Then the classification
error under a 50-50 mixture distribution Pmix := 1

2 (Pobs + Ppcf) is bounded:

P(x,t)∼Pmix

[
L̂(x, t) ̸= L(x, t)

]
≤ εcls.

A.3 Proxy Risk Approximation
We now quantify the discrepancy between the proxy and target counterfactual risks under the assumption that proxy samples
are matched within a bounded neighborhood. This result provides a formal justification for using proxy samples as a surrogate
for unobserved counterfactuals when estimating the target risk.
Lemma A.1 (Proxy Risk Approximation). Let f : X ×T → R be any prediction function. Suppose that for every (x, t) ∼ Pcf ,
there exists a matched sample (x′, t′) ∼ Ppcf such that

∥(x, t)− (x′, t′)∥ ≤ εANN.

Then under Assumptions A1, the expected risks satisfy∣∣RPcf
(f)−RPpcf

(f)
∣∣ ≤ Ll · (Ly + Lf ) · εANN := εproxy.



Proof. Recall the expected risk under each distribution:

RPcf
(f) = E(x,t)∼Pcf

[L(f(x, t), y(x, t))] ,

RPpcf
(f) = E(x,t)∼Pcf

[L(f(x′, t′), y(x′, t′))] ,

where (x, t) ∼ Pcf and (x′, t′) is its nearest matched point in Ppcf such that

∥(x, t)− (x′, t′)∥ ≤ εANN.

We compare the pointwise losses:

|L(f(x, t), y(x, t))− L(f(x′, t′), y(x′, t′))|
≤ |L(f(x, t), y(x, t))− L(f(x, t), y(x′, t′))|

+ |L(f(x, t), y(x′, t′))− L(f(x′, t′), y(x′, t′))| .

We bound both terms using Assumption A1:

• First term (label shift):
|y(x, t)− y(x′, t′)| ≤ Ly · εANN ⇒ term ≤ Ll · Ly · εANN.

• Second term (prediction shift):

|f(x, t)− f(x′, t′)| ≤ Lf · εANN ⇒ term ≤ Ll · Lf · εANN.

Summing both bounds:

|L(f(x, t), y(x, t))− L(f(x′, t′), y(x′, t′))| ≤ Ll · (Ly + Lf ) · εANN.

Taking expectation over (x, t) ∼ Pcf , and noting the one-to-one matching with (x′, t′) ∼ Ppcf , we conclude:∣∣RPcf
(f)−RPpcf

(f)
∣∣ ≤ Ll · (Ly + Lf ) · εANN = εproxy.

A.4 Proof of Theorem 1
Theorem A.1 (Risk Bound of DSCF). Let Pcf denote the true counterfactual distribution and Ppcf the proxy distribution
constructed via approximate matching. Let Lobs(x, t) := L(f̂obs(x, t), y(x, t)) and Lpcf(x, t) := L(f̂pcf(x, t), y(x, t)). Then
the expected counterfactual risk satisfies:

E(x,t)∼Pcf

[
L
(
f̂DSCF(x, t), y(x, t)

)]
≤ E(x,t)∼Ppcf

[min {Lobs(x, t), Lpcf(x, t)}]︸ ︷︷ ︸
oracle prediction

+ εproxy︸ ︷︷ ︸
proxy bias

+ BL · εcls︸ ︷︷ ︸
fusion penalty

.

where εproxy := Lℓ(Ly + Lf ) · εANN, with εANN denoting the maximal distance between a target counterfactual input and its
matched proxy neighbor. The fusion penalty term is bounded by BL · εcls, where BL = 2LℓB.

Proof. The proof proceeds in three steps.

Step 1: Reduction to Proxy Risk. From Lemma A.1, we have:

RPcf
(f̂DSCF) = RPpcf

(f̂DSCF) +
[
RPcf

(f̂DSCF)−RPpcf
(f̂DSCF)

]
≤ RPpcf

(f̂DSCF) + εproxy.

Step 2: Decomposition under Proxy Risk. We now analyze LDSCF(x, t) pointwise for (x, t) ∼ Ppcf . Let:

f̂DSCF := α · f̂obs + (1− α) · f̂pcf , f∗ := argmin{Lobs, Lpcf}.

Then, using triangle inequality and Lipschitz continuity:

LDSCF = L(y, f̂DSCF)

≤ L(y, f∗) + |L(y, f̂DSCF)− L(y, f∗)|
≤ L(y, f∗) + Ll · |f̂DSCF − f∗|.

We now bound the prediction deviation |f̂DSCF − f∗|. There are two cases:

• If f∗ = f̂pcf , then:
f̂DSCF − f∗ = α · (f̂obs − f̂pcf).



• If f∗ = f̂obs, then:
f̂DSCF − f∗ = (1− α) · (f̂pcf − f̂obs).

In both cases, we have:
|f̂DSCF − f∗| ≤ |α− L| · |f̂obs − f̂pcf |.

Assuming both heads are bounded in range (say by B), then:

|f̂obs − f̂pcf | ≤ 2B.

Hence:
LDSCF ≤ min{Lobs,Lpcf}+ 2LlB · |α− L|.

Taking expectation over (x, t) ∼ Ppcf (for which L = 0) gives:

RPpcf
(f̂DSCF) ≤ EPpcf

[min{Lobs,Lpcf}] + 2LlB · EPpcf
[α].

By Assumption A4, the expected error in classifying proxy samples is bounded:

EPpcf
[α(x, t)] ≤ εcls.

Letting BL := 2LlB, we get:
RPpcf

(f̂DSCF) ≤ EPpcf
[min{Lobs,Lpcf}] +BL · εcls.

Step 3: Final Bound. Combining the two steps:

RPcf
(f̂DSCF) ≤ RPpcf

(f̂DSCF) + εproxy ≤ EPpcf
[min{Lobs,Lpcf}] + εproxy +BL · εcls.

A.5 Distributional Advantage of Proxy Matching
This section provides a theoretical justification for the use of matching in the construction of proxy counterfactual training
data. Specifically, we show that the proxy counterfactual distribution produced by nearest-neighbor matching is geometrically
closer—under the 1-Wasserstein distance—to the true counterfactual distribution than the reweighted distribution obtained via
permutation weighting (PW), especially under violations of the positivity assumption. The result provides a distribution-level
rationale for preferring matching over reweighting in high-dimensional, support-mismatched settings.
Definition A.1 (1-Wasserstein Distance). Let P,Q be probability distributions over Z = X × T . Given a cost function
c : Z × Z → R≥0 (e.g., Euclidean distance), the 1-Wasserstein distance between P and Q is defined as

W1(P,Q) := inf
π∈Π(P,Q)

E(z,z′)∼π [c(z, z
′)] ,

where Π(P,Q) denotes the set of couplings with marginals P and Q.
Theorem A.2 (Matching Induces Lower 1-Wasserstein Distance). Let (Z, d) be a separable metric space with bounded metric
d, which also serves as the cost function in the definition of 1-Wasserstein distance. Let Pcf be the true counterfactual distribu-
tion and Pobs the observational distribution. Let Sobs := supp(Pobs), and suppose the positivity assumption is violated:

A := Z \ Sobs, with Pcf(A) = 1− λ > 0.

We compare two distributions:
• The permutation weighting (PW) distribution PPW, constructed by reweighting the observational distribution Pobs using

normalized importance weights:

PPW(dz) :=
w(z)∫

Sobs
w(z′) dPobs(z′)

· Pobs(dz), where w(z) :=
dPcf

dPobs
(z).

Here, w(z) denotes the Radon-Nikodym derivative of Pcf with respect to Pobs, assumed to exist on Sobs, and is set to zero
outside of supp(Pobs).

• The proxy matching distribution Ppcf := m#Pcf , defined by mapping each z ∼ Pcf to its nearest neighbor m(z) :=
argminz′∈Sobs

d(z, z′).
Then:

W1(Pcf , Ppcf) ≤ W1(Pcf , PPW),

with strict inequality under mild conditions.

Proof. The proof proceeds in four steps.



Step 1: Define a valid coupling for proxy matching. We define a joint distribution (coupling) πmatch := (id,m)#Pcf ,
i.e., pushforward of Pcf under the mapping z 7→ (z,m(z)). This coupling pairs each sample z with its nearest neighbor
m(z) ∈ Sobs. Since m(z) ∈ Sobs for all z, we know that for z ∈ A, d(z,m(z)) measures how far z is from the observed
support. For z ∈ Sobs, we have m(z) = z, and hence d(z,m(z)) = 0.

The transport cost under this coupling is:

W1(Pcf , Ppcf) ≤
∫
Z
d(z,m(z)) dPcf(z) =

∫
A

d(z,m(z)) dPcf(z) =: ρ.

This defines ρ as the expected geometric projection cost from the counterfactual distribution to the observed support. This
inequality holds because Wasserstein distance is defined as the minimum expected cost over all possible couplings. So any
specific coupling (like the one induced by matching) yields an upper bound.

Step 2: Lower bound for permutation weighting. Let π⋆ be any optimal coupling between PPW and Pcf . Since PPW

assigns no mass to A, but Pcf assigns mass 1− λ > 0, the coupling must move this mass into Sobs:

π⋆(A,Sobs) = 1− λ.

Explanation: The term π⋆(A,Sobs) denotes the joint probability mass that the coupling π⋆ assigns to all pairs (z, z′) where
z ∈ A := Z \ Sobs and z′ ∈ Sobs. In other words,

π⋆(A,Sobs) :=

∫
A×Sobs

dπ⋆(z, z′).

Since π⋆ must preserve the marginal Pcf on the first coordinate (by definition of a coupling), and Pcf(A) = 1− λ, all this mass
must be transported to some point z′ ∈ Sobs, because PPW has no support outside Sobs. Thus, the coupling must assign exactly
1− λ mass to the set A× Sobs.

For any z ∈ A and z′ ∈ Sobs, we always have:

d(z, z′) ≥ d(z, Sobs) := inf
s∈Sobs

d(z, s).

Using this inequality, we lower bound the Wasserstein cost:

W1(Pcf , PPW) =

∫
Z×Z

d(z, z′) dπ⋆(z, z′)

≥
∫
A×Sobs

d(z, z′) dπ⋆(z, z′)

≥
∫
A×Sobs

d(z, Sobs) dπ
⋆(z, z′)

=

∫
A

d(z, Sobs) dPcf(z) = ρ.

Key point (marginal consistency): Since π⋆ is a coupling between Pcf and PPW, its left marginal is Pcf . Thus,∫
A×Sobs

f(z) dπ⋆(z, z′) =

∫
A

f(z) dPcf(z),

for any integrable function f(z), including f(z) = d(z, Sobs).

Step 3: Combine inequalities. We now have:

W1(Pcf , Ppcf) ≤ ρ ≤ W1(Pcf , PPW).

Step 4: When is the inequality strict? Equality would require that every point y ∈ Sobs receives exactly the extra mass
(λ−1 − 1)Pcf(dy) from the set

{
z ∈ A : m(z) = y

}
. Unless the geometry of A and the projection map m conspires to make

this identity hold Pcf–a.s., extra intra-support rearrangement is necessary, adding positive cost and making the inequality strict.
Such perfect alignment occurs only in contrived edge cases, so in practice we have W1(Ppcf , Pcf) < W1(PPW, Pcf).

Remark A.1 (Generalization Implication). While 1-Wasserstein proximity does not guarantee a strictly lower test error, it
bounds the difference in risk under standard Lipschitz conditions. Specifically, if the loss function L is Lℓ-Lipschitz in its first
argument and the model f is Lf -Lipschitz, then (Fournier and Guillin 2015)

|RPcf
(f)−RPtrain

(f)| ≤ LℓLf ·W1(Pcf , Ptrain).

Therefore, proxy matching induces a strictly tighter upper bound on the generalization error than permutation weighting,
assuming comparable training loss. This highlights the distributional advantage of matching-based proxy construction.



B Additional Experimental Details
B.1 Dataset Visualization
To examine the structure and coverage of our datasets, we visualize training and test sets using UMAP projections over the
joint input space (x, t). As UMAP is a nonlinear projection, local geometric distortion may occur; the plots are intended for
qualitative comparison only.

• Synthetic datasets: We visualize 12 settings covering all combinations of intervention dimensionality p ∈ {10, 20, 30} and
confounding strength γ ∈ {0.1, 0.3, 0.5, 1.0}. Each subplot shows a 2D UMAP projection, with training samples in green
and test samples in red. Representative examples are shown in Figure 7.
Although fully synthetic, these datasets are generated via a structured process that induces long-tailed distributions, nonlinear
manifolds, and multi-scale clustering. The resulting input space exhibits rich and heterogeneous geometry—resembling real-
world user behavior patterns.
As shown in Figure 7, increasing γ leads to stronger covariate-treatment dependencies and more pronounced support mis-
match between training and test sets. While the structure also varies across different values of p, no consistent trend is
observed, likely due to randomness in data generation.

• Semi-synthetic dataset: Figure 8 shows the UMAP projection of the semi-synthetic dataset constructed from real-world
logs. While the projection reveals some structural heterogeneity, it does not clearly reflect the extent of support mismatch
between training and test sets. To quantify this, we compare the number of distinct intervention combinations: the training
set contains approximately 200,000 unique combinations, the test set contains around 400,000, but their overlap includes
only about 30,000 shared combinations. These statistics highlight the severe sparsity and shift in real-world combinatorial
settings, even under semi-synthetic construction.

(a) p = 10, γ = 0.1 (b) p = 10, γ = 0.3 (c) p = 10, γ = 0.5 (d) p = 10, γ = 1.0

(e) p = 20, γ = 0.1 (f) p = 20, γ = 0.3 (g) p = 20, γ = 0.5 (h) p = 20, γ = 1.0

(i) p = 30, γ = 0.1 (j) p = 30, γ = 0.3 (k) p = 30, γ = 0.5 (l) p = 30, γ = 1.0

Figure 7: UMAP projections of 12 synthetic datasets under different treatment dimensionalities p and confounding strengths γ.
Training samples are shown in green and test samples in red.



Figure 8: UMAP projection of the semi-synthetic dataset. Training samples are shown in green and test samples in red.

B.2 Implementation Details for Baselines
Training Setup. All baseline models are implemented within a unified PyTorch framework with consistent training config-
urations unless otherwise specified. We search learning rates over {1 × 10−3, 1 × 10−4}, and select 1 × 10−4 for synthetic
experiments and 1× 10−3 for semi-synthetic experiments, based on convergence speed and validation performance. The batch
size is set to 1024 for synthetic experiments and 2048 for semi-synthetic ones. All models are trained for up to 50 epochs using
the Adam optimizer, with early stopping based on validation loss. Unless noted otherwise, all predictors adopt a 4-layer MLP
with 128 hidden units per layer and ReLU activations. For the DSCF framework, we search the number of experts in {3, 5},
and use 5 in the final experiments due to better stability and performance. For baseline methods, key hyperparameters such
as the regularization coefficient in VSR and the smoothing factor in PW are selected based on validation performance. All
experiments are conducted on GPUs with at least 16 GB of memory. Synthetic experiments are run on a Windows 11 system
with an NVIDIA RTX 5080 GPU (16 GB VRAM). Semi-synthetic experiments are conducted on an Ubuntu system with an
NVIDIA A100 GPU (80 GB VRAM). Key software libraries include PyTorch, NumPy, and FAISS.

Method-Specific Configurations.
• RMNet follows the original implementation with an IPM-based regularization loss. The regularization distribution is chosen

as the same independent surrogate used in our main model. Since the original paper does not specify the regularization
strength, we set it to 1× 10−3, following common practice in CFRNet (Shalit, Johansson, and Sontag 2017).

• PW is known to suffer from high variance under positivity violations (Cortes, Mansour, and Mohri 2010). To mitigate
instability, we truncate sample weights at the 99th percentile of the estimated importance weights computed over the training
set, and normalize them across the full dataset.

• VSR uses a VAE to encode interventions into latent representations regularized toward a standard Gaussian prior. In our
experiments, we find that when data complexity is low (especially for binary variables), the model tends to produce near-
Gaussian latent representations, making it difficult for the domain classifier to distinguish between observational and prior
samples, and ultimately preventing effective reweighting. To alleviate this, we reduce the prior regularization strength to 0.1
based on empirical observations.

• NNpcf is trained on proxy counterfactual samples constructed via approximate matching. To prevent over-representation of
a narrow subset of samples, we adopt a hybrid retrieval strategy: for 90% of the queries, we select the nearest neighbor
deterministically; for the remaining 10%, we sample randomly from the top 0.32% of closest points. This heuristic balances
retrieval accuracy and sample diversity (Wu et al. 2023).

• H-Learner uses a meta-learning architecture with a two-stage structure. The hypernetwork takes the treatment vector as
input and generates the weights of an outcome predictor, which then maps covariates to outcomes. The hidden dimension of
the hypernetwork is set to 4p to ensure sufficient capacity. This design results in a parameter count roughly 4p times larger
than standard models, making H-Learner considerably more resource-intensive.

• Synthetic Combinations (SC) assumes access to outcomes under multiple interventions for the same unit. This assump-
tion is unrealistic in real-world scenarios where units differ in covariates and IDs, and it also contradicts the definition of
counterfactuals. To emulate this setting, we perform k-means clustering over the covariate space and treat each cluster as a
pseudo-unit. The number of clusters is set to 20p to ensure sufficient within-unit intervention diversity, thereby providing
enough pseudo-unit to support horizontal regression as required by SC. Despite these adjustments, SC still fails to adapt to
our setting, and performs poorly in our synthetic experiments (see Table 4).



Table 4: Prediction errors (RMSE and MAE) of SC across synthetic datasets with varying p and confounding strengths γ.

SC γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

p = 10 6.104 3.501 7.636 4.236 7.439 3.928 8.035 3.884
p = 20 6.356 4.462 35.73 3.752 8.559 3.713 101.9 4.680
p = 30 8.364 5.851 12.90 8.830 18.10 12.65 21.58 15.57

Table 5: Ablation configurations in Table 3. Full results for each configuration (without averaging) are provided in Table 6.

id Reg Data Reg Model Cls Data OutputDobs Dpcf Dobs Dpcf Dcf

(1) ✓ MLP
(2) ✓ MLP
(3) ✓ ✓ MLP×2 ✓ ✓ Reweighted
(4) ✓ ✓ HardShare Obs Head
(5) ✓ ✓ HardShare Pcf Head
(6) ✓ MMoE
(7) ✓ MMoE
(8) ✓ ✓ MMoE Obs Head
(9) ✓ ✓ MMoE Pcf Head
(10) ✓ ✓ MMoE avg
(11) ✓ ✓ MMoE ✓ ✓ Reweighted
(12) ✓ ✓ MMoE-lite ✓ ✓ Reweighted
(13) ✓ ✓ MMoE ✓ ✓ Reweighted

Table 6: Full ablation results across varying confounding strengths γ and intervention dimensions p

id γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0

RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ RMSE ± σ MAE ± σ

p = 10
(1) 3.952± 0.160 1.434± 0.040 5.499± 0.013 1.834± 0.008 6.164± 0.057 2.197± 0.035 6.265± 0.042 2.574± 0.010
(2) 3.776± 0.172 1.385± 0.037 5.330± 0.020 1.632± 0.032 5.682± 0.022 1.776± 0.003 6.130± 0.055 2.109± 0.007
(3) 3.761± 0.131 1.229± 0.024 5.329± 0.014 1.554± 0.018 5.790± 0.017 1.771± 0.011 6.082± 0.036 2.097± 0.001
(4) 3.575± 0.067 1.229± 0.024 5.424± 0.098 1.554± 0.030 5.716± 0.108 1.785± 0.047 6.011± 0.076 2.190± 0.011
(5) 3.543± 0.067 1.211± 0.017 5.388± 0.093 1.592± 0.018 5.665± 0.112 1.735± 0.045 5.992± 0.078 2.132± 0.006
(6) 3.200± 0.091 0.991± 0.028 4.615± 0.022 1.338± 0.062 5.234± 0.232 1.577± 0.010 5.861± 0.072 2.179± 0.026
(7) 3.309± 0.164 1.014± 0.025 4.796± 0.167 1.253± 0.044 5.162± 0.149 1.410± 0.034 5.314± 0.031 1.769± 0.035
(8) 3.100± 0.045 0.904± 0.047 4.493± 0.123 1.180± 0.037 5.192± 0.140 1.465± 0.040 5.258± 0.055 1.871± 0.085
(9) 3.086± 0.151 0.867± 0.011 4.495± 0.240 1.152± 0.034 5.102± 0.256 1.363± 0.056 5.280± 0.126 1.654± 0.031
(10) 3.107± 0.021 0.833± 0.020 4.463± 0.139 1.131± 0.003 5.119± 0.185 1.371± 0.043 5.221± 0.077 1.715± 0.062
(11) 3.070± 0.136 0.831± 0.010 4.495± 0.238 1.135± 0.019 5.106± 0.251 1.351± 0.056 5.276± 0.124 1.647± 0.033
(12) 3.295± 0.045 0.878± 0.006 4.705± 0.202 1.194± 0.023 5.014± 0.257 1.319± 0.061 5.388± 0.018 1.740± 0.089
(13) 3.100± 0.026 0.832± 0.017 4.469± 0.152 1.132± 0.003 5.112± 0.200 1.350± 0.048 5.207± 0.066 1.640± 0.042

p = 20
(1) 4.459± 0.094 2.081± 0.037 6.423± 0.277 2.476± 0.079 5.588± 0.067 2.568± 0.074 7.849± 0.168 3.494± 0.008
(2) 4.580± 0.057 2.036± 0.031 6.178± 0.044 2.134± 0.018 5.642± 0.101 2.482± 0.109 7.393± 0.216 3.083± 0.061
(3) 4.280± 0.061 1.756± 0.021 6.125± 0.125 2.010± 0.024 5.507± 0.084 2.383± 0.088 7.362± 0.130 3.066± 0.058
(4) 4.611± 0.114 1.876± 0.166 6.150± 0.097 2.093± 0.038 5.652± 0.059 2.425± 0.074 7.591± 0.293 2.912± 0.049
(5) 4.587± 0.033 1.826± 0.019 6.142± 0.108 2.104± 0.034 5.623± 0.065 2.389± 0.057 7.685± 0.287 2.952± 0.067
(6) 4.480± 0.334 1.577± 0.210 5.764± 0.223 1.782± 0.065 4.920± 0.399 1.926± 0.136 6.895± 0.141 2.794± 0.100
(7) 3.865± 0.363 1.429± 0.030 5.567± 0.120 1.603± 0.083 5.212± 0.138 1.941± 0.100 6.905± 0.120 2.452± 0.051
(8) 3.856± 0.243 1.363± 0.077 5.497± 0.277 1.458± 0.148 4.737± 0.170 1.799± 0.067 6.434± 0.253 2.253± 0.102
(9) 3.752± 0.034 1.323± 0.093 5.513± 0.202 1.447± 0.106 4.747± 0.133 1.700± 0.063 6.768± 0.113 2.211± 0.195
(10) 3.714± 0.137 1.233± 0.056 5.458± 0.182 1.377± 0.131 4.649± 0.074 1.649± 0.056 6.521± 0.155 2.132± 0.151
(11) 3.753± 0.103 1.255± 0.063 5.523± 0.202 1.422± 0.114 4.710± 0.083 1.687± 0.059 6.610± 0.224 2.206± 0.195
(12) 3.730± 0.129 1.075± 0.113 5.265± 0.100 1.328± 0.073 4.447± 0.073 1.513± 0.015 6.302± 0.088 2.001± 0.022
(13) 3.725± 0.153 1.234± 0.058 5.462± 0.160 1.401± 0.118 4.673± 0.105 1.674± 0.055 6.640± 0.185 2.202± 0.193

p = 30
(1) 1.742± 0.019 1.273± 0.015 4.295± 0.087 2.713± 0.041 9.196± 0.047 5.436± 0.028 11.751± 0.117 7.532± 0.065
(2) 1.712± 0.013 1.258± 0.009 2.956± 0.007 1.985± 0.020 6.466± 0.031 4.108± 0.036 9.385± 0.014 6.002± 0.021
(3) 1.527± 0.013 1.078± 0.003 2.931± 0.007 1.943± 0.019 6.463± 0.031 4.098± 0.036 9.384± 0.014 6.001± 0.021
(4) 1.364± 0.024 1.007± 0.018 2.711± 0.036 1.826± 0.021 7.349± 0.195 4.228± 0.123 9.461± 0.099 6.001± 0.045
(5) 1.355± 0.016 0.998± 0.012 2.611± 0.031 1.762± 0.019 7.341± 0.199 4.186± 0.123 9.534± 0.085 6.003± 0.036
(6) 1.285± 0.086 0.898± 0.047 3.434± 0.136 2.055± 0.051 6.931± 0.235 3.922± 0.137 9.791± 0.908 6.090± 0.321
(7) 1.171± 0.042 0.848± 0.046 3.056± 0.293 1.820± 0.173 5.920± 0.708 3.409± 0.316 8.767± 1.184 5.412± 0.529
(8) 1.019± 0.053 0.728± 0.024 3.172± 0.903 1.828± 0.379 5.712± 0.457 3.252± 0.252 7.695± 0.363 4.855± 0.170
(9) 0.992± 0.050 0.713± 0.026 2.458± 0.265 1.518± 0.130 5.070± 0.242 2.919± 0.068 6.823± 0.218 4.389± 0.126
(10) 0.985± 0.044 0.705± 0.019 2.669± 0.429 1.609± 0.193 5.246± 0.103 3.018± 0.082 7.001± 0.075 4.489± 0.049
(11) 0.986± 0.047 0.707± 0.022 2.458± 0.265 1.517± 0.130 5.070± 0.242 2.919± 0.068 6.823± 0.218 4.389± 0.126
(12) 0.967± 0.014 0.692± 0.001 2.983± 0.356 1.685± 0.090 6.831± 0.331 3.693± 0.168 8.453± 0.322 5.334± 0.236
(13) 0.983± 0.045 0.705± 0.021 2.458± 0.265 1.517± 0.130 5.070± 0.242 2.919± 0.068 6.823± 0.218 4.389± 0.126

B.3 Ablation Configuration Details
The configurations used in our ablation study are summarized in Table 5. Corresponding results on synthetic datasets are
provided in Table 6. Below, we explain the meaning of each field in the configuration table:

• Reg Data: Indicates the data source used to train the regression model.



– Dobs: Observational data.
– Dpcf: Proxy counterfactual data constructed via approximate matching.

• Reg Model: Specifies the regression model architecture.
– MLP: A standard multi-layer perceptron trained on a single data source.
– MLP×2: Two separate MLPs trained independently on Dobs and Dpcf, respectively.
– HardShare: A shared-bottom architecture jointly trained on both data sources.
– MMoE: A multi-gate mixture-of-experts model with separate gating for each data source.
– MMoE-lite: A reduced-capacity MMoE variant with hidden dimensions halved.

• Cls Data: Indicates whether a domain classifier is used to compute soft weights for prediction fusion, and the data sources
used to train it.
– (empty): No domain classifier is used; final predictions do not rely on reweighting.
– Dobs: Observational data (same as in Reg Data).
– Dpcf: Proxy counterfactual data (same as in Reg Data).
– Dcf: Synthetic counterfactual data sampled from the factorized target distribution.

• Output: Indicates how the final prediction is computed, either directly or via output fusion.
– (empty): The final prediction is directly taken from the regression model without any fusion.
– Reweighted: Weighted average of the two heads using soft weights from the domain classifier.
– Obs Head: Output from the observational head only.
– Pcf Head: Output from the proxy counterfactual head only.
– Avg: Equal-weight average of the two prediction heads.


