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Abstract

Listwise reranking with Large Language Models (LLMs) has
emerged as the state-of-the-art approach, consistently estab-
lishing new performance benchmarks in passage reranking.
However, their practical application faces two critical hur-
dles: the prohibitive computational overhead and high la-
tency of processing long token sequences, and the perfor-
mance degradation caused by phenomena like “lost in the
middle” in long contexts. To address these challenges, we in-
troduce Compress-then-Rank (C2R), an efficient framework
that performs listwise reranking not on original passages, but
on their compact multi-vector surrogates. These surrogates
can be pre-computed and cached for all passages in the cor-
pus. The effectiveness of C2R hinges on three key innova-
tions. First, the compressor model is pre-trained on a com-
bination of text restoration and continuation objectives, en-
abling high-fidelity compressed vector sequences that mit-
igate the semantic loss common in single-vector methods.
Second, a novel input scheme prepends embeddings of each
ordinal index (e.g., [1] :) to its corresponding compressed
vector sequence, which both delineates passage boundaries
and guides the reranker LLM to generate a ranked list. Fi-
nally, the compressor and reranker are jointly optimized,
making the compression ranking-aware for the ranking objec-
tive. Extensive experiments on major reranking benchmarks
demonstrate that C2R provides substantial speedups while
achieving competitive and even superior ranking performance
compared to full-text reranking methods. The related code is
provided in the supplementary materials.

Code — https://aaai.org/example/code
Datasets — https://aaai.org/example/datasets

Extended version —
https://aaai.org/example/extended- version

1 Introduction

Passage ranking is a fundamental task in information re-
trieval and natural language processing, aiming to pre-
cisely order a list of candidate passages based on their
relevance to a user’s query. It serves as a cornerstone in
numerous applications, such as web search (Krestel and
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Figure 1: Comparison of our proposed C2R framework
and typical listwise reranking, illustrated with eight candi-
dates. Typical listwise reranking processes full-text passages
(left), whereas our C2R framework leverages compact, com-
pressed vector sequences for listwise reranking (right).

Fankhauser 2012), question answering (Mao et al. 2021), di-
alogue systems (Won et al. 2023), and the broader Retrieval-
Augmented Generation paradigm (Gao et al. 2023). The
dominant approach follows a two-stage “retrieve-then-
rerank” pipeline. An initial, fast retriever recalls a broad
set of candidates, which are then meticulously reranked by
a more powerful but computationally intensive reranker to
boost precision (Matveeva et al. 2006; Asadi and Lin 2013;
Cambazoglu et al. 2010). In the reranking stage, while cross-
encoder models were once the standard, the emergence of
Large Language Models like GPT-4 (Achiam et al. 2023)
has opened a new frontier. Researchers have explored vari-
ous prompting strategies to leverage their superior text un-
derstanding and reasoning capabilities for passage rerank-
ing, primarily categorized as pointwise (Liang et al. 2022;
Sachan et al. 2022), pairwise (Qin et al. 2023; MacAvaney



and Soldaini 2023), and listwise (Sun et al. 2023; Pradeep,
Sharifymoghaddam, and Lin 2023a) methods. Among these,
listwise approaches such as RankGPT (Sun et al. 2023) have
established new state-of-the-art performance. By generating
a globally optimal permutation for a list of passages simulta-
neously, they capture relative differences between passages
that other methods overlook.

Despite their exceptional performance, listwise LLM
rerankers are constrained by two critical challenges. First,
despite the increasing context window sizes of modern
LLMs, concatenating numerous passages into a single in-
put often leads to the “lost in the middle”” phenomenon (Liu
et al. 2023). This limitation impairs their capacity to fully
utilize and extract relevant information from the entire ex-
tended context, especially from its central parts, thereby de-
grading reranking precision. Conversely, employing more
concise textual representations can alleviate this issue (An
et al. 2024; Rau et al. 2025). Second, incorporating the
full text of all passages into the prompt significantly esca-
lates inference costs and computational overhead, resulting
in high latency that is frequently prohibitive for practical,
time-sensitive ranking scenarios (Chen et al. 2025).

To address these critical challenges, we propose
Compress-then-Rank (C2R), a novel two-stage framework
illustrated in Figure 1. At its core, this framework introduces
a compression mechanism designed to simultaneously ad-
dress the twin challenges of computational inefficiency and
degraded ranking accuracy due to excessive input sequence
lengths. Instead of processing full-text passages, C2R em-
ploys a compressor to transform each passage into a short,
information-rich sequence of special vectors. This strategy
yields a dual benefit. For efficiency, these compact surrogate
vectors can be pre-computed and cached, which drastically
reduces the reranker’s input length and thereby mitigates
prohibitive latency and computational costs. For effective-
ness, representing passages as a sequence of vectors—rather
than collapsing them into a single vector—mitigates the se-
vere semantic loss that is common in single-vector methods.
This design largely preserves the semantic information and
helps alleviate the “lost in the middle” phenomenon associ-
ated with long contexts, thus safeguarding ranking perfor-
mance. Finally, to effectively structure the input for the list-
wise ranking task, a novel hybrid input scheme is employed.
Specifically, it prepends the embedding of each textual index
marker (e.g., [1] :) to its corresponding compressed vec-
tor sequence. This approach serves to clearly delineate pas-
sage boundaries and provide explicit structural cues to the
reranker LLM. The compressor and reranker are jointly opti-
mized, this synergistic design enables C2R to perform high-
quality listwise ranking directly on the compressed vector
sequences, achieving the dual goals of drastically reduc-
ing the computational load while preserving the semantic
fidelity required for accurate relevance judgment.

We evaluate our proposed framework, C2R, on popu-
lar reranking benchmarks, including the TREC DL and
BEIR. Experimental results show that C2R achieves a com-
pelling balance between efficiency and effectiveness. No-
tably, when reranking the top-100 candidates retrieved by
BM25 on the DL19 dataset, C2R’s input token count is re-

duced by approximately 92% compared to the equivalent
full-text reranking approach, while simultaneously improv-
ing the nDCG@10 score by 4.9%. This demonstrates that
our method drastically reduces computational costs while
enhancing ranking quality. Our main contributions are sum-
marized as follows:

* We propose C2R, an efficient and effective listwise
reranking framework designed to reduce computational
overhead while improving ranking accuracy.

* We introduce two novel C2R components: (1) a multi-
vector compression method to represent passages, avoid-
ing single-vector semantic bottlenecks and capturing nu-
anced information from long passages; and (2) a hybrid
input scheme integrating textual indices with compressed
vector sequences, which delineates passage boundaries
and guides the reranker LLM.

* The compressor and reranker are jointly fine-tuned, cre-
ating a ranking-aware, end-to-end system tailored for
ranking objective. Our extensive experiments demon-
strate C2R’s superior performance in efficiency and rank-
ing accuracy.

2 Preliminaries

Before diving into the details of the proposed method, we
formally define the listwise reranking task in the era of large
language models.

Given a query g and a list of N candidate passages P =
{p1,p2,-..,pn} from a first-stage retriever, the goal of list-
wise reranking is to find a permutation 7* that maximizes a
ranking metric, such as nDCG@k.

An LLM-based listwise reranker, denoted as M.y, pro-
cesses passages by handling them in sublists. For a given
sublist of w passages, {pi,,...,Dp:,}, the reranker con-
structs a prompt Py that concatenates some instructional
text I, the query ¢, and the full text of each passage:

apiw})- (1)

The LLM then generates a locally optimal permutation
Twindow foOr this sublist:

7A'rwindow - Mrank(B‘ull)- (2)

To handle candidate lists where the total number of pas-
sages N exceeds the context window size w, methods like
RankGPT (Sun et al. 2023) employ a sliding window mech-
anism. This technique iteratively applies the reranking pro-
cess to overlapping windows of passages, allowing the most
relevant ones to “bubble up” towards the top of the final
list. While this approach is highly effective, its primary chal-
lenge is the length of the input prompt, | Pyy|. This length is
dominated by the sum of the passage texts, >, |text(p;, )|,
which leads to significant computational overhead.

Py = PromptTemplate(7, ¢, {pi,, - - -

3 Methodology
3.1 Overview of the C2R Framework

The overall architecture of our proposed framework, C2R,
is depicted in Figure 2. Designed to mitigate the efficiency
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Figure 2: The architecture of the C2R framework. The model is trained in two phases: a pre-training phase (right) where the
compressor learns to generate passage representations, and a supervised fine-tuning phase (center) where the compressor and
reranker LLM are jointly optimized for listwise reranking using our proposed hybrid input scheme.

bottleneck of listwise reranking with LLMs while maintain-
ing high ranking effectiveness, C2R’s core idea is to replace
lengthy passage texts with compact, high-fidelity vector se-
quences before feeding them to the reranker LLM. This two-
stage architecture primarily comprises a passage compres-
sor, denoted as Mcomp, and a listwise reranker LLM, M.

Following the standard sliding window paradigm (Sun
et al. 2023), the C2R framework processes a sublist of can-
didate passages to produce a ranked permutation. This is
achieved by transforming the reranking process to one that
leverages compact compressed vector sequences, as detailed
in the following sections.

Passage Compressor Mcomp. Our compressor is a
decoder-only Transformer, parameterized by Ocomp. It imple-
ments a function C that maps the text of a passage p; to a
sequence of [, compressed vectors:

Ci= C(pi; ecomp)7 3)

where C; € Rl**" with h being the hidden dimension of
the model. This compressed vector sequence is designed to
preserve richer semantic information compared to single-
vector methods.

Listwise Reranker M;,,k. A powerful LLM with param-
eters O.x acts as the reranker. It operates on a structured
input composed of the query, the instruction, and the com-
pressed vector sequences {C;}. A hybrid input scheme in-
tegrates textual index markers (e.g., [1] :) by prepending
them to their corresponding compressed vector sequences,
guiding the LLM to generate a ranked list.

The effectiveness of C2R hinges on a carefully sequenced
training strategy for these components. First, the compres-
sor Mcomp is independently pre-trained to optimize its vec-
tor representations, enabling a frozen LLM to perform both
text restoration and continuation tasks based solely on these

vectors. Subsequently, the pre-trained compressor and the
reranker Mk are jointly optimized end-to-end via super-
vised fine-tuning (SFT). This crucial second stage aligns the
entire system with the final listwise ranking objective, adapt-
ing the compressor to produce ranking-aware compressed
vector sequences and teaching the reranker to interpret them
effectively.

3.2 Compressor Pre-training

To ensure the compressed vector sequences C; are seman-
tically faithful surrogates of the original passages, we pre-
train the compressor Mcomp using a dual-objective approach.
We use a transformer as the encoder, while employing the
reranker LLM itself as the decoder model.We keep the
decoder’s parameters O, frozen during this pre-training
phase, to perform both text restoration and continuation, a
strategy inspired by recent context compression work (Ge
et al. 2023; Rau et al. 2025).

The pre-training process begins by constructing an input
sequence for Mcomp for each passage p; from a large corpus
Ppretrain- This is done by concatenating a special [enc] to-
ken, the passage text, and [, special [comp] tokens, as de-
picted in Figure 2. Mcomp then processes this input, and the
final hidden states corresponding to the [comp] token posi-
tions are extracted to form the compressed vector sequence
C; = C(pi; Bcomp)- Finally, C; is passed to Mk, and the
compressor’s parameters Ocomp are optimized through text
restoration and text continuation tasks to refine the com-
pressed vector sequences:

Text Restoration The objective is to reconstruct the orig-
inal passage tokens p; = (t1,t2,...,%),,) from the com-
pressed vector sequence Cj. The restoration loss, Liestores
is therefore defined as the negative log-likelihood of the



ground-truth token sequence, conditioned on Cj:

[pil
ZIOgP t; |Cut<j7Mrank) 4)

Jj=1

£restore (ecomp

where ¢; denotes the 4" token in the original passage.

Text Continuation To capture the broader context vital
for effective reranking, where text restoration alone is insuf-
ficient, we introduce text continuation. This complementary
task requires the model to generate a subsequent text chunk
d;; from C;, compelling C; to encode the passage’s contex-
tual trajectory. The continuation loss is formulated as:

|d;]
Zlogpt |C1,t<]7Mrank) (5)
Jj=1

‘CCOI’IY ( GCOmp

where t; denotes the j th token in the continuation segment,
and t_; represents the preceding tokens {t,...,t’_;}.

Our pre-training employs a multi-task learning approach,
stochastically alternating between text restoration and text
continuation objectives. For each sample, only the selected
task’s loss is backpropagated to optimize Ocomp. This dual-
objective training forces fcomp to learn robust, compact rep-
resentations in the frozen LLM’s latent space, capturing both
detailed content and contextual trajectory of the original pas-
sage.

3.3 Joint Supervised Fine-tuning for Reranking

Following pre-training, we jointly fine-tune the compressor

Momp and the reranker My, on a labeled dataset Dspr.

Each instance in this dataset is a triplet consisting of a

query g, a list of w candidate passages, and the correspond-

ing target permutation string Y* (e.g., "[3] > [20] >
. "), which serves as the supervision signal.

Hybrid Input Construction. For a query ¢ and a window
of w passages {pi, , . . . , Di,, }» we first construct a hybrid rep-
resentation S; for each passage p;; by concatenating its in-
dex embedding with its compressed vector sequence:

S —E( )”C(pz]a comp) (6)

where || denotes sequence concatenation. The final input em-
bedding sequence for the reranker, Xj,py, is then formed
by concatenating the instruction embedding F(I), the query
embedding F(q), the sequence of all hybrid passage repre-
sentations, and a final rank token embedding:

)l EBS

where E'(I) denotes the embeddings of the instructional text
tokens, F/(q) denotes the embeddings of the query tokens,
and E([rank]) is the embedding of a special token we
introduce to prompt the model to generate the ranked output.
As illustrated in Figure 2, the compressed vector sequences
C(pi;; Ocomp) directly replace the embeddings of the [CP]
placeholders.

Xinpu = E(I)|| E(q IE(lrank]) @)

Listwise Ranking Objective. The parameters 0comp and
Orank are jointly optimized by minimizing the cross-entropy
loss between the reranker’s predicted token sequence Y and
the ground-truth permutation Y *:

Y|

Z log P(Yk |X1npuu Y<k7 erank) (8)
k=1

L:SFT (ecomp ) erank

To effectively leverage datasets of varying quality and
scale, our SFT process unfolds in two sequential stages us-
ing the same loss function from Equation 8, but on different
data.

Stage 1: Coarse-grained Alignment. First, we use a
large-scale, lower-quality dataset to establish a foundational
understanding of the task. The primary goal is to teach the
compressor Meomp t0 generate ranking-aware representa-
tions and the reranker M.k to interpret these vectors and
generate the correct output format (e.g., "[3] > [1] >

J ").

Stage 2: Fine-grained Refinement. Subsequently, we
fine-tune the system on a smaller, high-quality dataset. With
the basic input-output mapping already learned, this stage
focuses exclusively on refining ranking precision and cap-
turing nuanced relevance judgments.

This two-stage strategy fosters a powerful co-adaptation
between the two models: the compressor learns to pro-
duce representations tailored for the ranking task, while the
reranker simultaneously learns to effectively interpret these
specialized input vector sequences.

4 Experiment
4.1 Experimental Setup

Datasets and Metrics. Our training process involved pre-
training the compressor on 10 million Wikipedia pas-
sages (Petroni et al. 2020). Subsequently, Supervised Fine-
Tuning was conducted in two stages, utilizing a to-
tal of approximately 242,397 instances derived from MS
MARCO (Bajaj et al. 2016): first, a Coarse-grained align-
ment stage utilized 232,419 samples from PE-Rank (Liu
et al. 2025b), where ranking results were generated by
a MiniLM reranker; and second, a Fine-grained refine-
ment stage employed 9,978 high-quality samples from
RankZephyr (Pradeep, Sharifymoghaddam, and Lin 2023b),
which featured RankGPT-4 generated ranking results and
were selected for having exactly 20 candidates. We eval-
uvated our models on in-domain TREC DL 2019 &
2020 (Craswell et al. 2020, 2021) and on 8 out-of-domain
BEIR datasets (Thakur et al. 2021; Sun et al. 2023; Liu et al.
2025b), using nDCG@10 as the primary metric.

Baselines. We compare C2R against a suite of strong
reranking models, categorized as follows:

* Cross-encoders: monoBERT (Nogueira et al. 2019) and
monoT5 (Nogueira, Jiang, and Lin 2020).

e Zero-shot Rerankers: RankGPT (Sun et al. 2023) and
TourRank (Chen et al. 2025).



Model | Ret. | Covid NFCorpus Touché DBPedia SciFact Signal News Robust | Avg.
BM25 - 0.5947 0.3375 0.4422 0.3180 0.6789 0.3305 0.3952 0.4070 0.4380
Jina-Embeddings - 0.6894 0.3143 0.2868 0.3332 0.6553 0.2576  0.3980  0.3823 0.4146
monoBERT 10*BM25 | 0.7001 0.3688 0.3175*  0.4187 0.7136  0.3144 04462  0.4935 0.4716
monoT5 0.8071 0.3897* 0.3241*  0.4445 0.7657* 0.3255 0.4849  0.5671 0.5136
RankGPTj3 5 0.7667 0.3562 0.3618 0.4447 0.7043 0.3212 0.4885 0.5062 0.4937
RankGPT, 0.8551 0.3847* 0.3857 0.4712 0.7495 0.3440 0.5289 0.5755 0.5368*
TourRank¢ 0.8259* 0.3799* 0.2998 0.4464 0.7217 0.3083 0.5146 0.5787 0.5094
RankMistral 0.7800 0.3310 0.2746 0.3771 0.6622 03004 0.3710  0.3954 | 0.4365
ListT5-base 0.7830 0.3560 0.3340 0.4370 0.7410  0.3350 0.4850  0.5210 | 0.5090
ListT5-3B 0.8470 0.3770* 0.3360 0.4620 0.7700  0.3380 0.5320 0.5780 | 0.5300
PE-Rank 0.7772 0.3639 0.3306 0.4005 0.6938  0.3374 04970 0.4740 | 0.4843
C2R 0.8217 0.3839 0.3152 0.5285 0.7276  0.4262  0.5623  0.5968 | 0.5452

Table 1: Results (nDCG@10) of reranking top-100 passages on the BEIR benchmark. Ret denotes the retrieval model used in
the first stage. An asterisk (*) indicates no statistically significant difference between C2R and the baseline (p > 0.05 level)
using a two-sided t-test. The overall best model is shown in bold, while the best model within each block is underlined.

Model Ret. TRECDL19 TRECDL20
BM25 - 0.5058 0.4796
Jina-Embedding - 0.6594 0.6389
Supervised models trained with human annotation
monoBERT 2*BM25 0.7050 0.6728
monoT5 0.7183 0.6889
Unsupervised LLM-based listwise models

RankGPT3 5 3*BM25 0.6580 0.6291
RankGPT4 0.7559 0.7056
TourRank ¢ 0.7163 0.6956
LLM-based listwise models trained with distillation
RankVicuna 7*BM25 0.6682 0.6549
RankZephyr 0.7420 0.7086
RankMistral 0.7173 0.6807
ListT5-base 0.7180 0.6810
ListT5-3B 0.7180 0.6910
PE-Rank 0.7048 0.6354
C2R 0.7905 0.7791

Table 2: Results (nDCG @ 10) of reranking top-100 passages
on TREC DL. Ret means the retrieval model used in the first
stage, * denotes that there is no statistically significant dif-
ference between C2R and the baselines (p > 0.05 level) us-
ing a two-sided t-test. The best model among all is in bold,
while the best model in each block is underlined.

¢ Full-text Fine-tuned LLM Rerankers: ListT5 (Yoon
et al. 2024), RankVicuna (Pradeep, Sharifymoghaddam,
and Lin 2023a), RankZephyr (Pradeep, Sharifymoghad-
dam, and Lin 2023b), and RankMistral (Liu et al. 2025b).

¢ Compressed-token Fine-tuned LLM Rerankers: PE-
Rank (Liu et al. 2025b), which efficiently reranks by en-
coding each passage into a single embedding.

Implementation Details. Following previous work (Liu
et al. 2025b; Chen, Pradeep, and Lin 2025, 2024), our C2R
framework employs Mistral-7B-Instruct-v0.2 (Jiang et al.

2023) for both the reranker and the compressor, with these
two components sharing the same underlying model weights
to maximize parameter efficiency. The compressed vector
sequence length is set to [, = 8, and these passage vec-
tors are stored in Elasticsearch. For sequences exceeding
500 tokens, we truncate them to the first 500 tokens prior
to compression. For parameter-efficient adaptation, we uti-
lize LoRA (Hu et al. 2022) in all training stages. The model
is pre-trained for one epoch with a learning rate of 1 x 10~*
and subsequently fine-tuned for one epoch with a learning
rate of 5 x 107°. The hyperparameters were determined
based on empirical observations due to resource constraints.
We adopt FlashAttention (Dao et al. 2022) and DeepSpeed
ZeRO-2 (Rasley et al. 2020) to accelerate training and re-
duce memory usage. For evaluation, we rerank the top-100
passages retrieved for each query using the standard sliding
window technique (window size 20, step 10). Further details
on LoRA configuration, training infrastructure, and acceler-
ation techniques can be found in Appendix A. See Appendix
B for input prompt construction.

4.2 Effectiveness Analysis

The experimental results, presented in Table 1 and Table 2,
show that C2R achieves strong performance across stan-
dard benchmarks. Notably, it outperforms established full-
text listwise rerankers and single-token compression meth-
ods, demonstrating that the compress-then-rank paradigm
can enhance, rather than compromise, ranking effectiveness.
Remarkably, even with smaller model sizes, C2R surpasses
the performance of larger models such as GPT-4.

In-Domain Performance on TREC DL. On the TREC
DL tracks, when using BM25 (Robertson, Zaragoza et al.
2009), C2R’s nDCG@10 scores of 0.7905 on DL19 and
0.7791 on DL20 are higher than other baselines. This finding
is noteworthy, as it indicates that C2R, operating on com-
pact vector surrogates, can achieve higher performance than
models that process the full text.



Out-of-Domain Performance on BEIR. The perfor-
mance advantages of C2R generalize to the diverse BEIR
benchmark. In the BM25 setting, C2R’s average nDCG@ 10
of 0.5452 is higher than that of other leading models. The
model’s robustness is further shown by its top-ranking per-
formance on four of the eight individual datasets. These re-
sults demonstrate that C2R maintains strong performance on
out-of-domain datasets.

The Role of Ranking-Aware Compression. C2R’s supe-
rior effectiveness stems from its design philosophy: jointly
optimizing the compressor and reranker to create ranking-
aware compressed vector sequences. This trains the com-
pressor to extract key relevance signals while filtering
noise, producing a condensed, signal-rich input that en-
ables more precise reranking. The result is improved perfor-
mance across benchmarks, showing that targeted, relevance-
focused compression benefits ranking over processing full
unfiltered text.

Model nDCG@10 #Proc. Avg.L, #Gen.
TREC DL19

RankMistral,, 0.7196 9635.1 96.4 910.2
RankMistral 0.7050 6021.2 60.2 881.6
RankMistraly 0.4543 653.3 6.5 865.1

PE-Rank 0.7048 100.0 1.0 180.0
C2R 0.7905 800.0 8.0 888.7
Covid

RankMistral,, 0.7780 40038.5 400.38  986.5
RankMistral 0.7385 9702.1 97.0 929.6
RankMistral; 0.7540 2636.4 26.4 916.9
PE-Rank 0.7772 100.0 1.0 180.0
C2R 0.8217 800.0 8.0 956.9

Table 3: Efficiency analysis for reranking the top-100 candi-
dates retrieved by BM25. The # Proc. column measures the
total number of tokens in the concatenated candidate pas-
sages. Avg. L, represents the average token length per pas-
sage within the candidate set. # Gen. is the number of tokens
generated by the model. The subscript of RankMistral means
the form of inputs, including original passage (p), summary
(s), or title (t).

4.3 Efficiency Analysis

Our efficiency analysis, detailed in Table 3, demonstrates
that C2R resolves the classic trade-off between effec-
tiveness and computational cost. The full-text baseline,
RankMistral,,, sets a strong performance bar but at a sig-
nificant computational cost (e.g., 9635.1 tokens on TREC
DL19). While other compression strategies, including using
summaries or the single-vector approach of PE-Rank, re-
duce this token count, they generally fail to surpass the full-
text model’s performance, highlighting the typical dilemma.

C2R changes the trade-off by reducing computational
overhead and improving accuracy. Compared to the full-text
baseline, it cuts processed tokens by over 91% on TREC

DL19 and nearly 98% on the long Covid dataset. Impor-
tantly, this efficiency gain comes with a significant per-
formance boost on both benchmarks (e.g., from 0.7196 to
0.7905 on DL19), showing that C2R is not just faster but
also a more effective reranking method.

Setting DL20 News Robust04 SciFact DBPedia
Full Model 0.7791 0.5623 0.5968 0.7276 0.5510

w/o Pre-train 0.7385 0.5161 0.5646 0.6529 0.5012
w/o SFT Stage 1 0.5516  0.4342 0.4418 0.6802 0.4344
w/o SFT Stage2  0.5973  0.4467 0.4529 0.6578 0.4359
w/o SFT Fails Fails Fails Fails Fails

Table 4: Ablation study of C2R’s training stages, measured
by nDCG@10. The Full Model is our complete C2R frame-
work. The “w/o SFT” model fails as it is unable to generate
the required output format.

4.4 Ablation Study

To fully understand the contribution of each key component
in our C2R framework, we conduct a series of ablation stud-
ies. We analyze the impact of our proposed training stages
and the effect of different compression lengths.

Impact of Training Stages. To validate our training
methodology, we conducted an ablation study with results
presented in Table 4. The analysis confirms that every stage
is critical. The entire Supervised Fine-Tuning process is in-
dispensable, as the model (w/o SFT) completely fails with-
out learning the task’s required output format. Furthermore,
removing the compressor pre-training stage (w/o Pre-train)
leads to a significant performance drop across all datasets,
highlighting its vital role in establishing a robust semantic
foundation before task-specific adaptation.

The results also underscore the synergistic value of our
two-stage SFT strategy. Omitting the initial coarse-grained
alignment (w/o SFT Stage 1) causes a catastrophic decline
(e.g., to 0.5516 on DL20), proving its necessity for boot-
strapping the model’s understanding of the task structure.
Subsequently, removing the fine-grained refinement stage
(w/o SFT Stage 2) also severely degrades performance, con-
firming its crucial role in honing ranking precision. This
demonstrates that our carefully designed curriculum—from
pre-training to coarse and then fine-grained tuning—is es-
sential for achieving C2R’s competitive results.

Impact of Compression Length. We investigate how
compressed sequence length affects ranking performance,
with results shown in Table 5. Counter-intuitively, we ob-
serve that shorter compressed lengths consistently and sub-
stantially outperform longer ones across all tested datasets.
For instance, on DL19, reducing the length from 32 to 8
boosts the nDCG@10 score from 0.7382 to 0.7905. This
suggests that more aggressive, ranking-aware compression
more effectively distills salient relevance signals, implying
that in ranking tasks, a small number of vectors can carry
the necessary information. This highlights significant redun-
dancy in full-length passages when assessing relevance. Ex-
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EE C2R (Original)
0.80 4 C2R (Random)
0.7905 C2R (Inverse)
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nDCG@10

TREC DL19 TREC DL20
Figure 3: C2R’s performance across different initial passage
orderings, compared with the RankZephyr baseline. C2R
demonstrates high robustness with minimal internal varia-
tion, while consistently outperforming the baseline.

Compressed Length DL19 DL20 Covid News

32 0.7382 0.7188 0.7254 0.4990
8 0.7905 0.7791 0.8217 0.5623

Table 5: Impact of different compressed sequence lengths on
C2R’s performance (nDCG@ 10) across various datasets.

ploring various compressed lengths and their trade-offs is a
promising direction for future work.

Furthermore, we present the performance of C2R with
different retrieval models, including BGE (Xiao et al. 2024),
Jina (Giinther et al. 2023), and BM25, in Appendix C to
demonstrate its robustness across diverse retrievers.

Dataset Avg. Median Max. AnDCG
Length Length Length @10

Covid 332.9 298.0 4846 +5.3%

NFCorpus  377.7 365.0 2804 +16.0%
DBPedia 96.2 97.0 2397 +40.1%
Touché-20  466.8 272.0 6607 +14.8%
SciFact 395.0 366.0 2167 +9.9%
Signal-1M 24.5 22.0 80 +41.9%
News 955.9 837.5 25590  +51.6%
Robust04 1013.8 804.0 361494 +50.9%

Table 6: Analysis of C2R’s performance gain over RankMis-
tral in relation to average passage length characteristics on
BEIR datasets. Lengths are measured in tokens.

4.5 Robustness to Initial Passage Ordering

The performance of listwise rerankers can be affected by
the initial order of passages, a phenomenon known as po-
sitional bias (Stoehr et al. 2023; Tang et al. 2023; Yoon et al.
2024). To assess C2R’s robustness to this effect, we evalu-
ated its performance using three different ordering schemes.
We tested the Original sequence as provided by the BM25

retriever, a Random sequence from a shuffled retrieval list,
and an Inverse sequence reversed from the original order.

As shown in Figure 3, C2R demonstrates notable robust-
ness. On TREC DL19, the performance drop from the orig-
inal order to the random and inverse orders is modest. A
similar pattern is observed on TREC DL20. Critically, even
under the most challenging ‘Inverse’ and ‘Random’ condi-
tions, C2R’s performance remains substantially higher than
the strong RankZephyr baseline. This indicates that C2R ef-
fectively learns to assess passage relevance based on content
rather than being overly reliant on initial positioning, a key
attribute for a reliable reranking model.

4.6 Robustness to Passage Length Variation

Another key challenge in reranking is handling the wide
variation in passage length. Our analysis in Table 6
shows that C2R’s performance advantage over the full-text
RankMistral model is not uniform, but correlates with pas-
sage length characteristics. The improvements are particu-
larly significant for both very long and short passages.

For instance, on long-text datasets like Robust04 and
News, where average token counts are highest, C2R
achieves its most significant relative nDCG@10 gains of
+50.9% and +51.6%, respectively. This demonstrates its ef-
fectiveness in mitigating the “lost-in-the-middle” problem
common in full-text models. Concurrently, C2R also secures
massive improvements on short-text datasets like Signal-1M
and DBPedia, with gains of +41.9% and +40.1%. This high-
lights its ability to distill crucial signals even from concise
texts. We attribute this robust performance to our end-to-end
training, which enables the compressor to act as a ranking-
aware relevance filter that extracts salient information and
discards noise regardless of document length.

5 Related Work

The listwise reranking paradigm has become a predomi-
nant approach for leveraging Large Language Models in
information retrieval (Sharifymoghaddam et al. 2025; Sun
et al. 2023; Zhu et al. 2023; Rathee, MacAvaney, and Anand
2025). In this method, the model processes a list of candidate
passages simultaneously to directly generate a reordered list
based on relevance (Ma et al. 2023, 2020; Sun et al. 2023;
Tamber, Pradeep, and Lin 2023). This allows for the consid-
eration of inter-passage relationships, a key advantage over
pointwise or pairwise methods.

One line of work aims to improve the overall inference
framework by replacing or enhancing the sliding window.
This includes proposals for more efficient architectures like
tree inference (Yoon et al. 2024), parallelizable top-down
partitioning (Parry, MacAvaney, and Ganguly 2024), and
ranked list truncation to dynamically reduce the number
of candidates (Meng et al. 2024). Furthering this direction,
several training-free and model-agnostic strategies propose
dividing the candidate set into smaller groups for parallel
processing, then aggregating these local results into a fi-
nal global ranking through mechanisms like tournament-
style point systems (Chen et al. 2025) or by synthesizing
implicit pairwise comparisons (Dedov 2025). Other studies



focus on optimizing the process within each window, such
as using passage embeddings for more compact context en-
coding (Liu et al. 2025a,b), reducing generation latency via
the first token’s probability distribution (Gangi Reddy et al.
2024), or producing globally comparable relevance scores
through a self-calibration training process to overcome win-
dowing limitations (Ren et al. 2025). Furthermore, an active
research direction involves distilling the capabilities of pow-
erful rerankers like RankGPT into smaller, more efficient
listwise models (Liu et al. 2024; Pradeep, Sharifymoghad-
dam, and Lin 2023a,b; Zhang et al. 2025).

6 Conclusion

We introduce C2R, a novel framework enhancing LLM-
based listwise reranking efficiency and effectiveness. Our
experiments on TREC DL and BEIR benchmarks show C2R
achieves substantial speedups and competitive, often su-
perior, ranking performance compared to full-text models.
This work validates that a carefully designed, ranking-aware
compression can be more effective than processing the un-
filtered text, paving the way for the practical deployment of
powerful listwise rerankers in applications and opening new
possibilities for other token-intensive NLP tasks.
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