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论文精选

美团技术团队不仅在新技术落地上追求卓越，还积极探索前沿技术。2019 年，

美团技术团队联合国内外多所高校和学者，在数个国际会议上发表重要论文，包括人

工智能领域顶会KDD、CVPR、IJCAI、WWW，GIS 顶会 SIGSPATIAL，机器人

顶会 IROS，运筹学年会 INFORMS。

美团点评还在文字识别国际顶会 ICDAR�2019 发布了真实场景的中文门脸招牌

图像数据集，并举办了中文门脸招牌文字识别比赛。

依托美团点评生活服务领域多样化真实场景及丰富数据，我们愿与学术界携手，

协同创新，探索前沿技术方向，推动理论研究在产业实践中的落地。
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ABSTRACT
Bike-sharing systems become more and more popular in the ur-
ban transportation system, because of their convenience in recent
years. However, due to the high daily usage and lack of effective
maintenance, the number of bikes in good condition decreases sig-
nificantly, and vast piles of broken bikes appear in many big cities.
As a result, it is more difficult for regular users to get a working bike,
which causes problems both economically and environmentally.
Therefore, building an effective broken bike prediction and recy-
cling model becomes a crucial task to promote cycling behavior. In
this paper, we propose a predictive model to detect the broken bikes
and recommend an optimal recycling program based on the large
scale real-world sharing bike data. We incorporate the realistic con-
straints to formulate our problem and introduce a flexible objective
function to tune the trade-off between the broken probability and
recycled numbers of the bikes. Finally, we provide extensive exper-
imental results and case studies to demonstrate the effectiveness of
our approach.

CCS CONCEPTS
• Applied computing → Transportation; Forecasting; Transporta-
tion; • Information systems → Spatial-temporal systems.
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1 INTRODUCTION
Bike-sharing system is a popular transportation system in modern
cities, as it not only provides an environment friendly choice for
short-distance travelling, but also eases the traffic congestion. Cur-
rently, there are over 1,000 deployed bike-sharing systems world
wide, and more than 300 systems are in the progress of deploy-
ment [29]. In recent years, station-less bike-sharing services, like
Mobike1, which allow users to pick up and drop off bikes at any
locations they want, become more popular.

Due to the sharing nature of the bike-sharing systems, the shar-
ing bikes have much higher broken possibilities compared with
private bikes due to the high ridden frequency and open-air park-
ing problem. For example, the bike sharing system in New York
saw 3.6 daily rides per bike 2. As a result, as shown in Figure 1(a),
thousands of broken station-less sharing bikes are being kept in a
bike graveyard.

(a) Bike Graveyards (c) Users Report 
Fault Bike Review

(b) Mobike Users 
Malfunction Report

%

14.9%

85.1%

Figure 1: Issues with broken Sharing Bike.

Since the number of bikes put in the market is limited, without
the proper maintenance, the number of bikes in good condition is
continuously decreasing. The broken bikes not only cause economic
losses to the companies but also lead to environmental pollution.
Therefore, an effective bike recycling plan should be conducted.
Currently, Mobike develops a broken bike report function in the
app, so that the broken bikes can be discovered in a crowdsourcing
way. As shown in Figure 1(b), users can report different types of
bike problems in the mobile app, so that the company can arrange
workers to collect and recycle them.
1https://en.wikipedia.org/wiki/Mobike
2https://bit.ly/2T6q5SE
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However, there are three challenges to conduct such a broken
bike recycling task:

Inaccurate and Inadequate Labels. Though the broken bike
report function can help the company to quickly locate the broken
bike, the report cannot be fully trusted. As shown in Figure 1(c),
we manually exam the status of the reported broken bikes. Only
85.1% bikes are truly broken. Furthermore, not all of the users are
willing to report the broken status of the bikes, as the broken report
function is not a required step.

Arbitrary Spatial Distribution. Different from the station-
based systems, the parking location of each individual station-less
bike is totally arbitrary, which makes the recycling routes vary
from day to day.

Limited Recycle Capacity. Given a set of bikes to be recycled,
the worker can only collect the limited number of broken bikes
within the working hour. Besides, the capacity of the collecting
vehicle is limited, and the worker has to drive back to the recycling
site as soon as the vehicle is full of broken bikes.

In this paper, we design a broken bike recycling route planning
system for the worker. This system consists of two main modules:
1) broken bike inference, which infers the broken probability of
each sharing bike using its inherent characteristics and the user
trajectories associated with it; and 2) recycling route planning,
which plans multiple closed recycling routes for the worker to
conduct in each day.

The contributions of the paper are summarized as follows:
(1) We propose a novel broken sharing bike recycling problem,

which takes the broken probability, working time constraint, and
vehicle capacity into consideration.

(2) We build a broken bike inference model using inherent fea-
tures and trajectory features extracted from the sharing bike so
that the status of every single bike can be accurately inferred.

(3) We propose a scatter search-based heuristic algorithm for the
broken sharing bike recycling problem.

(4) Experiments show the recycling efficiency of the broken bikes
recommended by scatter search algorithm is 2.5 times that of the
regional random search method and 1.5 times that of the Nearest
neighbor routing search method. At the same time, the result of
the algorithm is twice the efficiency of Mobike employees’ broken
bikes recycling.

The rest of the paper is organized as follows: Section 2 describes
the problem and the system overview. Broken sharing bike infer-
ence model is discussed in Section 3. Section 4 gives the solution of
broken sharing bike recycling routing problem. Experiments and
case studies are given in Section 5. Related works are summarized
in Section 6. Section 7 concludes the paper.

2 OVERVIEW
In this section, we define the broken prediction and recycling rout-
ing problem for Sharing Bike, and outline our solution framework.

2.1 Preliminaries
We define pi as the inferred broken probability of sharing bike bi .
In the recycling task, we only consider bikes which are inferred
as broken, i.e., pi > 0.5. The bike with high broken probability
is preferred to collect in the priority given limited working time.

However, the bikes with high broken probability can distribute
unevenly in the given region, which introduces large traveling
time, and finally leads to less number of broken bike collected. As
a result, we define a beneficial score scorei below to characterize
the worthiness of collecting a particular bike bi . In the broken bike
recycling mission, the dockless sharing bike can be at any location
in the city, e.g., hiding in the residential area or close to the road
network, where the parking location of collecting vehicles is usually
along with the road network. As a result, the distance between them
varies significantly, which we define vw (walking speed) and rt
(registration time) below to better characterize the individual bike
collecting events.

Definition 1. (Beneficial score) scorei captures the overall ben-
efit to recycle bike bi , which characterizes the trade-off between the
broken likelihood and the recycling cost of bi .

scorei = α
pi

minp α ≥ 1 (1)
where the parameter α represents the trade-off preference on the bro-
ken probability pi vs recycling cost. minp is the minimum broken
probability over all the bike in the region, which serves as a normal-
ization term.

Each bike bi has a broken probability pi , i.e., the likelihood of
being a broken bike. In practice, the trade off when choosing a bike
is: If we seek for only bikes of high broken probability pi , we may
end up with a small number of bikes collected (less efficient); on
the other hand, if we seek for a large number of collected bikes,
many bikes collected may not be broken (false positive). The bene-
ficial score defined in definition 1 captures such a trade-off by the
parameter α . The reason for designing a score function using the
exponential function is that the bike with higher broken probability
will have a higher score (α > 1). When α is close to 1, the efficiency
is highly considered, leading to a large number of collected bikes;
on the other hand, when α � 1 is large, the broken probability pi
is highly considered, thus only bikes with high pi will be collected.
Especially, α = 1 means that we do not care about the broken prob-
ability of the bike, and every broken bike has the same beneficial
score. The α is a tunable parameter (chosen by the service oper-
ators), which provides them the flexibility between the efficiency
(i.e., the number of collected bikes) and the likelihood of the col-
lected bike being broken. From the operator’s perspective, there are
different objectives under various circumstances, for example, in re-
gions hard to access, the efficiency should be highly considered (i.e.,
choosing α close to 1), while in areas with bikes densely populated,
e.g., downtown, accurately collecting each broken bike is preferred,
thus the likelihood of broken bikes needs to be considered more
(i.e., choosing a large α ). As a result, the beneficial score measures
the practical "benefit" of collecting each bike.

Definition 2. (Sub-route) Each closed route, which starts and
ends at the collection site s , is considered as a sub-route.

Definition 3. (Time Cost) The time cost of sub-route Rj is com-
posed of the vehicle travelling time between consecutive locations and
the visiting time at each broken bike. Given a sub-route Rj = s →
br1 → · · · → brn → s , the time cost Tj is calculated as follows:

Tj = Ttravel (Rj ) +
n∑
i=1

Tvisit (bri ). (2)
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Let us denote the shortest road network distance between broken
bike bi and bj as dist(bi ,bj ), and the vehicle driving speed as vd ,
then the travelling time cost is calculated as follows:

Ttravel (Rj ) =
dist(s,br1 ) +

∑n−1
i=1 dist(bri ,bri+1 ) + dist(brn , s)

vd
.

(3)
The broken bike visiting time includes the walking time between
the vehicle on the main road and the location of the broken bike,
and the broken bike registration time rt . We denote the walking
speed as vw , and the perpendicular distance of the broken bike bi
to the nearest road segment as shi f ti , then the visiting time cost
can be represented as

Tvisit (bri ) =
2shi f tri
vw

+ rt . (4)

Problem Definition. Given the road network RN , driving speed
vd , walking speedvw , collection site s , broken bike registration time
rt , working hour T , vehicle capacityM , and a broken sharing bike
distribution graphG = (V , E). The vertex set V = {b1,b2, · · · ,bn }
represents all the broken bikes in the given service region of s , each
of which is associated with a spatial location and a collection score
scorei , and the edge set E denote the road network connectivity of
broken bike pairs.
The objective of the broken bike recycling route planning problem
aims to plan multiple traveling routes for the worker, so that the
total score collected is maximized. The recycling route planning
problem fulfills three constraints: (1) each broken bike is collected
at most once; (2) the working time of the personnel is no more than
T ; and (3) the broken bikes collected in each sub-route are no more
than the vehicle capacity M . If we use δi j to denote whether the
broken bike bi is collected during sub-route Rj , the problem can be
formulated as follows:

max
R

∑

bi ∈V

∑
Rj ∈R

δi jscorei (5)

str .
∑
Rj ∈R

δi j≤ 1, ∀bi ∈ V (6)

∑
Rj ∈R

Tj≤ T (7)

∑

bi ∈V
δi j≤ M, ∀Rj ∈ R (8)

Such a problem of finding k budget constrained connected com-
ponents with a maximum beneficial score is NP-hard as proven in
Lemma 1 below.

Lemma 1 (NP-difficulty). When time and capacity constrained,
collecting broken-sharing-bikes with a maximal beneficial score is
NP-hard.

Proof. The broken sharing bikes collection problem is a combi-
nation of broken sharing bike vertex selection and determining the
shortest path between the selected vertices. As a consequence, We
can reduce our problem of collecting broken-sharing-bikes with
maximal beneficial score from the Knapsack Problem (KP) and the
Travelling Salesperson Problem (TSP), when time and capacity con-
strained. We can view each broken sharing bike bi ∈ V as an item,

with an item size (i.e., Collecting time cost), and an item profit
(e.g., a beneficial score contribution). The set V of selected broken
sharing bikes is viewed as a knapsack, with a fixed size T (i.e., total
working time constraint). Furthermore, not all broken sharing bike
bi ∈ V have to be visited in the problem. Determining the shortest
path between the selected vertices bi ∈ V

� will be helpful to visit
as many vertices as possible in the available time. our goal is to
maximize the total score collected. If a recycling worker with not
enough time and capacity to collect all possible broken sharing
bikes. He knows the number of beneficial scores to expect in each
broken bike and wants to maximize the total beneficial score, while
keeping the total travel time limited to T . Our problem boils down
to an Orienteering Problem problem (OP), which is known to be
NP-complete [41]. �

Given it is an NP-hard problem, we develop a heuristic-algorithm
to tackle the issue.

2.2 System Overview

Broken Bike Inference

Broken Probability Inference

Recycling Route Planning Multiple Routes

Feature Extraction

Trajectory FeaturesInherent Features

Scatter Search-Based 
Routing 

Distribution Graph

Road NetworkBroken Bikes
90%

85%

92%
Route 1

Route 2

Route 3

Figure 2: System Overview.

Figure 2 gives an overview of our system, which consists of two
main components: (1) Broken Bicycle Inference, which calculates
broken probability for each sharing bike, which takes the sharing
bike’s parameters, e.g., the bike inherent feature, and trajectory
features, and outputs the bike broken probability and current status
(detailed in Section 3) and (2) Recycling Route Planning component
takes the results of the prediction model, the road network data
and the recycling of historical data as input. It establishes the dis-
tribution graph of the broken bikes (detailed in Problem Definition)
and recommends the optimal route for recycling the broken bike
(detailed in Section 4).

3 BROKEN BIKE INFERENCE

Due to the fact that there is only a small proportion of sharing
bikes reported as broken by the users, and not all of the reported
bikes are truly broken, a broken bicycle inference model is required
to detect the real broken bikes for theworker to collect. An inference
model under the supervised-learning paradigm is used to assign a
broken probability to each bicycle. In the later routing algorithm,
the bike with high broken possibility is preferred to collect.

The training bike samples are selected as follows: 1) If a bike
is reported as broken by Mobike user and the broken status is
confirmed by the worker, we regard it as a broken bike sample; 2) If
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(a) Difference of speed probability density distributions
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(b) Difference of duration probability density distributions 
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0
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Figure 3: Mobike Trip Characteristics.
a bike is rode repeatedly in a time period (i.e., one month), and the
user does not report the status of the bike as a broken, we regard it
as a good bike sample.
Feature Extraction. Whether a bike is broken can be inferred
mainly from two aspects: 1) inherent features, such as the life time of
the bicycle, the number of ridden times, the total duration of cycling,
and the number of maintenance; and 2) trajectory features, which
include the average travel speed and trip duration distributions.
The selected trajectory features are derived from the analytics of
Mobike trajectories. As shown in Figure 3(a), the probability of the
average riding speed less than 1m/s for the broken bike is much
higher than the good bike. This may be because some broken bikes
are more cumbersome, the cycling speed will be slower. And from
Figure 3(b), the trip duration of the broken bike is much shorter
compared with the good one. This may be because the user finds
that there is some problem with the bike after scanning the bicycle
to ride, thereby terminating the cycling behavior. This phenomenon
of user riding helps to determine the state of the sharing bike.
BrokenProbability Inference. Since the sharing-bike status takes
two values: good or broken (not good), we use a 0-1 valued binary
variable y to denote the status outcome, where 1 stands for broken
and 0 stands for good. We use pi to denote the broken probabil-
ity of the bike bi . The probability depends on many factors, such
as the trip duration and speed of a bike, etc. Such information
can be encoded into a feature vector Xi , which is associated with
the inherent features and the trajectory features of sharing bikes.
Given extracted feature vector Xi , we can estimate the acceptance
probability as: pi = p(y = broken |Xi ). Since then, the broken in-
ference task can be formulated as a typical binary classification
problem, and the traditional classification model, such as Logistic
Regression [11], can be employed.

4 RECYCLING ROUTE PLANNING

After the broken probability of each bike in the service region of
a collection site is obtained, the distribution graph is constructed
using bike locations with broken probabilities and the road network
data. In this section, we describe the scatter search-based routing al-
gorithm for the broken bike recycling problem using the constructed
distribution graph.

In broken bike recycling problem, the instance size is surely be-
yond the solvability of standard solver, for example, as shown in Fig-
ure 4, there are typically hundreds of broken bikes in some regions,
and 39 broken sharing bike collection site in Beijing. The collection

(a) Distribution of Broken Sharing Bikes (b) Distribution of Collection Site 

Figure 4: BokenMobike sharing Bike and collection site Dis-
tribution in Beijing

site of broken sharing bike need to occupy certain resources, so
each collection site has its own service range. The departure and
return locations of the workers are the same collection site in the
area. If there is no limit to the capacity of the recycling vehicle
and there are no restrictions on the working hours of the recycling
workers. Our problem of recycling broken bikes with maximal ben-
eficial score can be converted into a problem of recycling all broken
sharing bikes and minimizing the overall recycling path, which can
be converted into a tsp problem. However, in the case of working
hours and the limited capacity of the recovered vehicle. The prob-
lem can be described as workers with not enough time and vehicle
capacity to collect all possible broken bikes. He knows the benefi-
cial score which is uniquely defined by the practical broken-bike
collection problem (detailed in 2) of each broken bikes, and wants
to maximize beneficial scores, while with the working hours and
vehicle capacity limited.
Main Idea. Due to the capacity limitationM of the recycling vehi-
cle, the worker can only collect the limited number of bikes during
one sub-route. The main idea is that during each sub-route, we first
try to collect at mostM bikes with high broken probabilities (i.e.,
high beneficial scores), which are spatially close to each other, and
then carefully plan the visiting order, so that the traveling time in
each sub-route is minimized. We continuously find such sub-route
until the working time is used up. The discovery of each sub-route
is explained in following three stages: 1) broken bike clustering; 2)
sub-route selection; 3) status update.

Stage 1: Broken Bike Clustering. In this stage, the bikes in-
ferred to be broken are clustered using spatial clustering algorithm,
e.g., kMeans [18], so that the broken bikes in each cluster are spa-
tially close to each other. The number of clusters k is computed
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according to both recycling vehicle capacity M and The total num-
ber of broken bikes in the area n. We initialize k as k = round(n/M).

Stage 2: Sub-route Selection. In this stage, the algorithm finds
the best sub-route in each cluster, and the best sub-route over all
the clusters is selected. The goodness of a sub-route is defined as
the beneficial score per time cost. The sub-route selection in each
cluster is conducted in an iteratively way following the scatter
search idea. We first select bikes with top M high scores as the
initial bike set to recycle, and then design recycling route for it
using TSP algorithm. Then we randomly replace a bike in the sub-
route with a bike outside the sub-route but inside the cluster, to
check whether there is any improvement. This process is repeated
N times to obtain a stable sub-route in each cluster.

Stage 3: Status Update. In each iteration, the algorithm puts
the best sub-route Rj into the final recycling route set R, and up-
dates the working time by subtracting the time spent recycling
broken bikes in Rj and broken bike vertex set V by subtracting the
recycled broken bikes in sub-route Rj . The algorithm terminates
when working time T is used up, and then returns the recycling
route set R as the recommended broken bikes recycling plan.
AlgorithmDesign. Algorithm 1 gives the pseudo-code of our scat-
ter search-based heuristic algorithm. In each iteration of the Scatter
Search stage(Line 2), the algorithm first partition the vertex set of
broken bike nodes V into k clusters. The value of K is determined
by the number of broken sharing bikes and the capacity of the
recycling vehicle. Then, optimal broken sharing bikes collection
scheme in the cluster is then selected separately in each indepen-
dent cluster. When initializing the sub-route set in each cluster,
two initialization strategies are employed depending on the value
of a α . If the number of broken bikes in the candidate set Si is
greater than recycling vehicle capacity M , the initial recovery of
the bicycle is selected using two methods. If tuning parameter α
is equal to 1, the algorithm random select M broken bikes point
in set Si . otherwise, the algorithm select M broken bike in set Si
by the probability value of each broken bike as the candidate set
Ci (Line 4-10). After selecting the initial result set Ci in cluster i ,
we use Function RecyRoute to solve the optimal recycling order of
the broken bike in the result set and calculate the gain of recycling
benefit score дi . In the set Si in which the number of each broken
bicycle is larger than the recycling vehicle capacity, Take the broken
bicycle not included in the setCi which are randomly selected from
the set Si to replace random replace a broken bike in the set Ci .
During the process, we keep track of the set C �

i and Ci , which has
the maximum score gain in the iteration. If the number of broken
bikes in the candidate set Si is less than recycling vehicle capacity
M , we just calculate the corresponding beneficial score gain. Select
the best setCi which has the maximum score gain from all clusters,
and puts the best set Rj in recycling route set R base on Function
RecyRoute. Then, Ri is removed from broken sharing bikes set V ,
the remaining working time is updated by subtracting the time cost
Ri .time .At the same time, due to the reduction of the number of
broken bikes, the number of clusters is also reduced (Line 11- 19).

Finally, when all the working time budget is used up, the algo-
rithm terminates, and broken sharing-bikes recycling route set R
is returned as the recommended broken bike recycling plan.

Algorithm 1 Scatter Search-based Routing Algorithm

Input: Broken sharing-bikes distribution graph G = (V , E), working
time T , parameter α , capacity M , initial number of clusters k and the
maximum number of iterations N .
Output: Recycling route set R.

1: while T > 0 do
//Stage 1: Broken Bike Clustering

2: (S1, S2, · · · , Sk ) ← Kmeans(V , k )
//Stage 2: Sub-route Selection

3: for i ← 1 to k do
4: if Si > M then
5: if α = 1 then
6: Random select M points in Si as Ci
7: else
8: Select the top M of broken probability in Si as Ci
9: else
10: Select all point in Si as Ci
11: Ri , дi ← RecyRoute(Ci )
12: for l ← 1 to N do
13: Randomly swap bm ∈ Ci by b� ∈ Si −Ci as C�

i
14: R�

i , д
�
i ← RecyRoute(C�

i )
15: if д�i > дi then
16: Ci ← C�

i ; Ri ← R�
i ; дi ← д�i

17: j ←i дi
//Stage 3: Status Update

18: R ← R ∪ {Rj }; T ← T − Rj .t ime ; V ← V − Rj
19: k ← k − 1
20: return R

Function RecyRoute(Ci )
Ri ← TSP(Ci ); дi ← Ri .score

Ri .t ime
return Ri , дi

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
effectiveness of our system.We first describe the real dataset used in
the paper. Then, we present comparison results with other baseline
methods over different values of α and working time constraints.
Finally, we present real-world case studies to evaluate our broken
bike detection and recycling route planning algorithm.

5.1 Datasets
RoadNetworks. The road network data in Beijing and Guangzhou,
China is collected from Open Street Map 3.
Mobike Order Data. Each Mobike order contains a bike ID, a user
ID. The dataset used in the paper includes the entire Mobike orders
in the City of Beijing and Guangzhou from 01/08/2018 to 12/31/2018.
Mobike Recycling Data. Each Mobike recycling record contains
a bike ID, a worker ID, the start time and the end time to recycle
the bike. The dataset is collected in the City of Beijing, with the
time span of 01/06/2017 - 12/31/2018.
Mobike Trajectories. Each Mobike trajectory contains a bike ID,
a user ID, the time interval of the trajectory, the start/end locations,
and a sequence of intermediate GPS points. The dataset includes the
3https://www.openstreetmap.org/
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entire Mobike trajectory data in the City of Beijing and Guangzhou
from 01/08/2018 to 12/31/2018.

5.2 Data Pre-Processing
Data Pre-processing takes the road network, the Mobike order data,
Mobike recycling data, and the Mobike trajectories as input, and
performs the following three tasks to prepare the data for further
processing:
Data Cleaning. Data Cleaning cleans the raw order data, trajec-
tories, and recycling data from Mobike. Essentially as a type of
crowdsensing data, Mobike trajectories are generated by the GPS
modules from mobile phones. As a result, a noticeable portion of
trajectories has different data errors, which significantly affect the
accuracy of the broken bike inference model. This step cleans the
raw trajectories fromMobike users by filtering the noisy GPS points
with a heuristic-based outlier detection method [43].
Map-Matching. In this module, we map the GPS points onto the
corresponding segments in road networks, which is crucial for the
broken sharing bike collection. The Mobike sharing bike can be at
any location in the city, e.g., hiding in the residential area or close to
the road network, where the parking location of collecting vehicles
is usually along with the road network. As a result, we should
employ vw (walking speed) to better characterize the individual
bike collecting events. This step evaluates the distance of each
broken sharing bikes to the nearest corresponding segments in
road networks with a global map matching method [28].
Map Griding. For the ease of assessing the regional rt (registration
time), we adopt the griding based method, which simply partitions
the map into equal side-length grids [23, 24]. our approach divides
the urban area into equal-size grids with a pre-defined side-lengths
in 100 meters.

5.3 Effectiveness Evaluation

In this subsection, we study the effectiveness of both broken bike
prediction and recycling. Unless mentioned otherwise, the default
parameters used in the experiments are: recycling vehicle capacity
M = 20, the average speed of the worker’s walking is vw = 1m/s ,
and the average speed of the worker’s driving is vd = 25km/h.
5.3.1 Broken Bike Prediction.

In the broken bike predictionmodel, we tried two popularmodels:
logistic regression (LR) [11] and random forest (RF) [2] algorithms.
We train the models for different cities and evaluate both methods
in terms of Accuracy (ACC) and Area under the Curve of ROC
(AUC). Experimental results for Beijing and Guangzhou are shown
in Table 1, where we observe that 1) LR outperforms RF slightly and
2) both models get good results, which validates the effectiveness
of our feature extraction scheme.

5.3.2 Performance of Different TSP Methods in Recycling Route
Planning.

We study the effect of different TSP methods in our recycling
route planning. The test data select from Haidian District, Beijing,
which the inference model give 537 broken bikes in this area as
shown in Figure 7. In this work, we tried five popular models:
Simulated Annealing Algorithms (SA) [13], Genetic Algorithms

Table 1: Results of LR and RF

Beijing
Model ACC AUC Recall F-score
LR 0.9768 0.9965 0.9763 0.97796
RF 0.9750 0.9934 0.9746 0.97608

Guangzhou
Model ACC AUC Recall F-score
LR 0.9757 0.9948 0.9759 0.9756
RF 0.9746 0.9933 0.9745 0.9750

Figure 5: The Evaluation of Different TSP Methods.
(GA) [31], Ant Colony Optimizations Algorithms (ACO)[9], Lin-
Kernighan(LK)[14] and Self-organizing Feature Maps (SOFM)[3].

We evaluate five methods in terms of the total beneficial scores in
our recycling broken sharing bike problem. Experimental results for
Beijing are shown in Figure 5. Our experiments show that for our
test data, these TSP algorithms do not make a significant difference
as well. SA is slightly more accurate. Therefore, we choose SA as
the TSP method in our recycling route planning model.

5.3.3 Recycling Route Planning.
We study the effect of different parameter settings of α and

working time, and we compare our method, i.e. Scatter Search-
based Routing (SSR), with two other baselines.

• Baseline 1: Random selection (RS). If there is no inference
model in the collection problem, we assume that workers collect
broken bikes according to user reports which occur randomly. We
directly take the next car after each collection of a broken bike
for collection. When the number of broken bikes collected reaches
the vehicle capacity, return to the broken bike station in the area
and repeat the random collection process for the next round. The
collection process terminates when the total collection time exceeds
the working time.

• Baseline 2: Nearest neighbor routing (NNR). The location
where the broken bike is relatively densely distributed is selected
as the starting area for collecting the first broken bike. In NNR, the
recycling vehicle starts at the recycling parking spot, repeatedly
visits the nearest broken bikes node until the capacity of the vehicle
and the working hours of the workers exceed the constraint and
returns back to the parking spot.
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Figure 6: Effectiveness Evaluation.

Figure 7: Broken sharing bike distribution cluster in Haid-
ian District.

Effects on Total Working Time Budget. Figure 6 illustrates the
total beneficial scores with different total working time budgets for
a worker with Mobike, from 1 Hour to 8 Hour. The experimental
results of finding a broken bike based on a random walk of RS is
the average value of the income score after the algorithm solves
the problem 1000 times independently. From the figure, we make
the following observations: 1) the scatter search-based heuristic
SSR method performs better than other baseline models. 2) When
working hours are between 5 hours and 6 hours, the NNR method
will have a useful period of slow growth. This is because, during
this time, the NNR method took a long time in a broken bicycle. It is
interesting that, because of the slight damage to the bike, the user

is not quite sensitive to it and the bike moves within a certain range.
This has resulted in a higher recovery cost for workers. The SSR
method can adjust the recovery of the beneficial score by controlling
the parameter α , which can solve the phenomenon and make the
overall recovery more effective as shown in Figure 6(b). Figure 6(c)
provides the results with different α settings, It is interesting that,
when α is large, the number of recycling broken sharing bikes will
be reduced to some extent. Moreover, with a higher α , the number
of recycling broken bikes is smaller, but the degree of reduction will
gradually decrease. The reason behind these phenomena is that a
bicycle with a higher probability of failure prediction has a higher
score. Where the value of α is larger, and it is more preferable to
collect a bicycle which has higher broken probability when collect-
ing broken sharing bikes. However, the distance between bikes also
affects the time cost of recycling, so when the value of a is larger,
the number of broken bikes collected will become smaller.

Region A Region B

Collection Site

Figure 8: A Real Case Study in Haidian District, Beijing.

5.4 Case Studies
To better understand the effectiveness of our bike prediction and
recycling model, we conduct a field case study. We choose to visit
the area near Zhichun Road, Dazhongsi, and Beitucheng subway
station in Haidian District, Beijing.

Figure 8 gives the path that Mobike operators use to recycle
broken bikes in this area. The workers recovered a total of 32 bro-
ken bikes in the vicinity in 8 hours, and mainly concentrated near
the temporary parking spots. The traditional recycling methods of
worker are similar to the NNS method. The worker first finds the
area where the broken bikes are densely distributed near the tem-
porary parking point through the location reported by bikes. Then,
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a broken bike in the dense area is selected and recycled according
to the scheme of the shortest travel distance of the map navigation.
When the target bicycle is found, another broken bike which is clos-
est to the current location is selected for recycling. However, this
will make recyclers tend to pay more attention to broken bikes that
are closer to temporary parking spots. The distribution of broken
bikes in the area is not fully considered, resulting in low efficiency
and high cost of recycling. Figure 9 shows the results of the broken
recovery path recommended by the SSR method. Mobike’s worker
recycles the broken bikes in a given area three times and collect
59 broken bikes in an 8 hour working time limit. It is interesting
that, the recommended recovery path of the algorithm is not only
the broken bikes concentrated near the temporary parking point,
but also the broken bikes far from the temporary parking point are
also included in the recommended collection of recycling. This is
because the algorithm parameters take into account of the overall
distribution of the bikes and the optimal recovery sequence in the
actual recycling process, and the parameters are tuned according to
the efficiency gain of each bike recovery. This makes the recycling
of bikes more efficient. At the same time, the two broken bikes at
the bottom left of Figure 9 are the broken bikes that are seriously
broken in the recovery. One is the chain is broken, and the other
is the seat is lost. The confidence of the two cars in the model is
0.99988294 and 0.99961954 respectively. These two bikes belong to
the broken bike that is preferentially collected when the value of α
is greater than one. This shows that the model is sensitive to bike
with a relatively high degree of failure.

Collection Site

Region A Region B

Region C

Broken Chain

Broken Seat

Figure 9: A Real Case Study Base on Scatter Search Model
Result in Haidian District, Beijing.

6 RELATEDWORK
The research of fault sharing bikes recycling can be summarized in
two main areas: 1) Urban Crowd Sourcing, and 2) Route Planning.
Urban Crowd Sourcing. Essentially, we take advantage of the
massive Mobike users in a city to perform the fault bike detec-
tion task. Similar problems are addressed with the crowdsourc-
ing techniques[19, 26]. For example, The literature [42] quantifies
the fragility of cities through detecting the delay in commuting
activities using GPS data collected from smartphones. The litera-
tures [34, 36] infer noise levels for locations by smartphone users.
The literature [27] proposes a bike sharing network optimization
approach by extracting fine-grained discriminative features from

human mobility data, point of interests (POI), as well as station
network structures. The literatures [7, 15] identify potholes or clas-
sify road quality from vehicle’s accelerometer data. Differing from
the above works, we focus on the problem of broken sharing bikes
detection and collecting path planning.
Route Planning. The fault sharing bike recycling problem is re-
lated to the multiple Traveling Salesman Problem (mTSP) [1, 38]
and orienteering Problem (OP) [4, 39, 41]. mTSP and OP can be
considered as a relaxation of our problem, with the capacity or
working time restrictions removed. The solutions for these two
problems are primarily in two fold: 1) optimal algorithms and 2)
heuristic algorithms. In literatures [21, 35], the authors use branch-
and-bound to solve instances with less than 20 and 150 vertices,
respectively. The authors in [22] use a cutting plane method to ob-
tain better upper bounds. In literatures [10, 12], the authors propose
branch-and-cut algorithms. However, the branch-and-cut proce-
dure with instances up to 500 vertices cannot be performed. GAs
are relatively stochastic search algorithms based on evolutionary
biology and computer science principles [16]. Using GAs to the
mTSP problem have several representations, like one chromosome
technique [33], the two chromosome technique [32] and the lat-
est two-part chromosome technique. The authors in [25] propose
an ant colony optimization approach and a tabu search algorithm.
In literature [37], the authors develop a Pareto ant colony opti-
mization algorithm and a multi-objective variable neighborhood
search algorithm. In [40], the authors propose a Variable Neighbour-
hood Search (VNS) algorithm and embed an exact algorithm to deal
with a path feasibility subproblem. In [20], the authors present two
polynomial size formulations for OP. The authors in [30] discuss
several vehicle routing algorithms, and present a heuristic method
which searches over a solution space formed by the large number
of feasible solutions to an mTSP. The authors in [17] study the
adaptive stochastic knapsack problem with deterministic size and
stochastic rewards. Their problem objective is to find a sequential
inserting policy to maximize the probability of the reward exceed-
ing a threshold value without violating the capacity constraint.
In [5], the authors study the adaptive stochastic knapsack problem
with items of deterministic reward and stochastic size. Their goal is
to maximize expected value while fitting all the items in the knap-
sack. The authors demonstrate the benefit of an adaptive policy
and provide an approximation approach. In [6], the authors study
an orienteering problem with stochastic travel times and present
adaptive path planning methods to take advantage of dynamically
updating data; combine the orienteering problem and optimal path
finding into a single model. The authors in [8] discuss the vehicle
routing problem with hard time windows and stochastic service
times (VRPTW-ST). They adopt the dynamic programming algo-
rithm to account for the probabilistic resource consumption by
extending the label dimension and by providing new dominance
rules. In this paper two recourse strategies are proposed and the
resulting problems are solved by branch-price-and-cut algorithms.
However, all of these works cannot be directly used for broken
sharing bikes recycling, because these works simply test on bench-
mark instances and fail to consider the realistic constraints and
road network distance.
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7 CONCLUSION

In this paper, we introduce a novel approach to detect broken
sharing bikes and recommend the appropriate bicycle recycling
path to the worker based on the real sharing bikes data collected
fromMobike (a major station-less bike sharing system). Our system
can address the problem of recycling efficiency of broken sharing
bikes in a more realistic fashion, considering the constraints and
requirements from sharing bike worker’s perspective: 1) working
time limitations, 2) vehicle capacity constraints, and 3) broken
sharing bike recovery benefit. We also propose a flexible beneficial
score function to adjust preferences between the number of bikes
recovered and the predicted probability of damage to bikes. The
formulated problem is proven to be NP-hard, thus we propose
a scatter search-based heuristic algorithm. We perform extensive
experiments on a large scale Mobike data and demonstrate the
effectiveness of our proposed broken sharing bike predict model
and bike recycling routing model, where our model can predict the
broken sharing bikes with above 97% accuracy and recommends
that the number of real broken bikes recovered by the recycling
path of the broken bikes is two to three times that of the Mobike
traditionally recycling broken bikes.

REFERENCES
[1] Tolga Bektas. 2006. The multiple traveling salesman problem: an overview of

formulations and solution procedures. Omega 34, 3 (2006), 209–219.
[2] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[3] Łukasz Brocki and Danijel Koržinek. 2007. Kohonen self-organizing map for

the traveling salesperson problem. In Recent Advances in Mechatronics. Springer,
116–119.

[4] I-Ming Chao, Bruce L Golden, and Edward A Wasil. 1996. The team orienteering
problem. European journal of operational research 88, 3 (1996), 464–474.

[5] Brian C Dean, Michel X Goemans, and Jan Vondrdk. 2004. Approximating the
stochastic knapsack problem: The benefit of adaptivity. In 45th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, 208–217.

[6] Irina Dolinskaya, Zhenyu Edwin Shi, and Karen Smilowitz. 2018. Adaptive
orienteering problem with stochastic travel times. Transportation Research Part
E: Logistics and Transportation Review 109 (2018), 1–19.

[7] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, and Hari
Balakrishnan. 2008. The pothole patrol: using a mobile sensor network for road
surface monitoring. In Proceedings of the 6th international conference on Mobile
systems, applications, and services. ACM, 29–39.

[8] Fausto Errico, Guy Desaulniers, Michel Gendreau, Walter Rei, and L-M Rousseau.
2018. The vehicle routing problemwith hard time windows and stochastic service
times. EURO Journal on Transportation and Logistics 7, 3 (2018), 223–251.

[9] Jose B Escario, Juan F Jimenez, and Jose M Giron-Sierra. 2015. Ant colony
extended: experiments on the travelling salesman problem. Expert Systems with
Applications 42, 1 (2015), 390–410.

[10] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. 1998. Solving the
orienteering problem through branch-and-cut. INFORMS Journal on Computing
10, 2 (1998), 133–148.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York.

[12] Michel Gendreau, Gilbert Laporte, and Frederic Semet. 1998. A branch-and-cut
algorithm for the undirected selective traveling salesman problem. Networks: An
International Journal 32, 4 (1998), 263–273.

[13] Xiutang Geng, Zhihua Chen, Wei Yang, Deqian Shi, and Kai Zhao. 2011. Solv-
ing the traveling salesman problem based on an adaptive simulated annealing
algorithm with greedy search. Applied Soft Computing 11, 4 (2011), 3680–3689.

[14] Keld Helsgaun. 2009. General k-opt submoves for the Lin–Kernighan TSP heuris-
tic. Mathematical Programming Computation 1, 2-3 (2009), 119–163.

[15] Marius Hoffmann, Michael Mock, and Michael May. 2013. Road-quality classifica-
tion and bump detection with bicycle-mounted smartphones. In Proceedings of the
3rd International Conference on Ubiquitous Data Mining-Volume 1088. CEUR-WS.
org, 39–43.

[16] John Holland. 1975. Adaptation in natural and artificial systems: an introductory
analysis with application to biology. Control and artificial intelligence (1975).

[17] Taylan İlhan, Seyed MR Iravani, and Mark S Daskin. 2011. The adaptive knapsack
problem with stochastic rewards. Operations research 59, 1 (2011), 242–248.

[18] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31, 8 (2010), 651–666.

[19] Shenggong Ji, Yu Zheng, and Tianrui Li. 2016. Urban Sensing Based onHumanMo-
bility. UbiComp 2016. https://www.microsoft.com/en-us/research/publication/
urban-sensing-based-human-mobility/

[20] Imdat Kara, Papatya Sevgin Bicakci, and Tusan Derya. 2016. New formulations
for the orienteering problem. Procedia Economics and Finance 39 (2016), 849–854.

[21] Gilbert Laporte and Silvano Martello. 1990. The selective travelling salesman
problem. Discrete applied mathematics 26, 2-3 (1990), 193–207.

[22] Adrienne C Leifer and Moshe B Rosenwein. 1994. Strong linear programming
relaxations for the orienteering problem. European Journal of Operational Research
73, 3 (1994), 517–523.

[23] Yanhua Li, Jun Luo, Chi-Yin Chow, Kam-Lam Chan, Ye Ding, and Fan Zhang.
2015. Growing the charging station network for electric vehicles with trajectory
data analytics. In 2015 IEEE 31st International Conference on Data Engineering.
IEEE, 1376–1387.

[24] Yanhua Li, Moritz Steiner, Jie Bao, Limin Wang, and Ting Zhu. 2014. Region
sampling and estimation of geosocial data with dynamic range calibration. In
2014 IEEE 30th International Conference on Data Engineering. IEEE, 1096–1107.

[25] Yun-Chia Liang, Sadan Kulturel-Konak, and Alice E Smith. 2002. Meta heuristics
for the orienteering problem. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1. IEEE, 384–389.

[26] Dongyu Liu, Di Weng, Yuhong Li, Jie Bao, Yu Zheng, Huamin Qu, and Yingcai
Wu. 2016. Smartadp: Visual analytics of large-scale taxi trajectories for selecting
billboard locations. IEEE transactions on visualization and computer graphics 23,
1 (2016), 1–10.

[27] J. Liu, Q. Li, M. Qu, W. Chen, J. Yang, H. Xiong, H. Zhong, and Y. Fu. 2015. Station
Site Optimization in Bike Sharing Systems. In 2015 IEEE International Conference
on Data Mining. 883–888. https://doi.org/10.1109/ICDM.2015.99

[28] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang.
2009. Map-matching for low-sampling-rate GPS trajectories. In Proceedings of
the 17th ACM SIGSPATIAL international conference on advances in geographic
information systems. ACM, 352–361.

[29] Russell Meddin and Paul DeMaio. 2015. The bike-sharing world map. (2015).
URLhttp://www.bikesharingworld.com

[30] RH Mole, DG Johnson, and K Wells. 1983. Combinatorial analysis for route
first-cluster second vehicle routing. Omega 11, 5 (1983), 507–512.

[31] Yuichi Nagata and Shigenobu Kobayashi. 2013. A powerful genetic algorithm
using edge assembly crossover for the traveling salesman problem. INFORMS
Journal on Computing 25, 2 (2013), 346–363.

[32] Yang-Byung Park. 2001. A hybrid genetic algorithm for the vehicle scheduling
problem with due times and time deadlines. International Journal of Production
Economics 73, 2 (2001), 175–188.

[33] Jean-Yves Potvin, Guy Lapalme, and Jean-Marc Rousseau. 1989. A generalized
k-opt exchange procedure for the MTSP. INFOR: Information Systems and Opera-
tional Research 27, 4 (1989), 474–481.

[34] Zhaokun Qin and Yanmin Zhu. 2016. NoiseSense: A crowd sensing system
for urban noise mapping service. In 2016 IEEE 22nd International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 80–87.

[35] R Ramesh, Yong-Seok Yoon, and Mark H Karwan. 1992. An optimal algorithm for
the orienteering tour problem. ORSA Journal on Computing 4, 2 (1992), 155–165.

[36] Rajib Kumar Rana, Chun Tung Chou, Salil S Kanhere, Nirupama Bulusu, and
Wen Hu. 2010. Ear-phone: an end-to-end participatory urban noise mapping
system. In Proceedings of the 9th ACM/IEEE international conference on information
processing in sensor networks. ACM, 105–116.

[37] Michael Schilde, Karl F Doerner, Richard F Hartl, and Guenter Kiechle. 2009.
Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence 3, 3
(2009), 179–201.

[38] Joseph A Svestka and Vaughn E Huckfeldt. 1973. Computational experience with
an m-salesman traveling salesman algorithm. Management Science 19, 7 (1973),
790–799.

[39] Tommy Thomadsen and Thomas K Stidsen. 2003. The quadratic selective travel-
ling salesman problem. (2003).

[40] Fabien Tricoire, Martin Romauch, Karl F Doerner, and Richard F Hartl. 2010.
Heuristics for the multi-period orienteering problem with multiple time windows.
Computers & Operations Research 37, 2 (2010), 351–367.

[41] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. 2011. The
orienteering problem: A survey. European Journal of Operational Research 209, 1
(2011), 1–10.

[42] Takahiro Yabe, Kota Tsubouchi, and Yoshihide Sekimoto. 2017. CityFlowFragility:
Measuring the Fragility of People Flow in Cities to Disasters using GPS Data
Collected from Smartphones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 3 (2017), 117.

[43] Yu Zheng. 2015. Trajectory data mining: an overview. ACM Transactions on
Intelligent Systems and Technology (TIST) 6, 3 (2015), 29.



论文精选　<　11

StarNet: Pedestrian Trajectory Prediction using
Deep Neural Network in Star Topology

Yanliang Zhu, Deheng Qian, Dongchun Ren, Huaxia Xia

Abstract— Pedestrian trajectory prediction is crucial for
many important applications. This problem is a great chal-
lenge because of complicated interactions among pedestrians.
Previous methods model only the pairwise interactions between
pedestrians, which not only oversimplifies the interactions
among pedestrians but also is computationally inefficient. In
this paper, we propose a novel model StarNet to deal with these
issues. StarNet has a star topology which includes a unique hub
network and multiple host networks. The hub network takes
observed trajectories of all pedestrians to produce a compre-
hensive description of the interpersonal interactions. Then the
host networks, each of which corresponds to one pedestrian,
consult the description and predict future trajectories. The
star topology gives StarNet two advantages over conventional
models. First, StarNet is able to consider the collective in-
fluence among all pedestrians in the hub network, making
more accurate predictions. Second, StarNet is computationally
efficient since the number of host network is linear to the
number of pedestrians. Experiments on multiple public datasets
demonstrate that StarNet outperforms multiple state-of-the-arts
by a large margin in terms of both accuracy and efficiency.

I. INTRODUCTION

Pedestrian trajectory prediction is an important task in au-
tonomous driving [1], [2], [3] and mobile robot applications
[4], [5], [6]. This task allows an intelligent agent, e.g., a self-
driving car or a mobile robot, to foresee the future positions
of pedestrians. Depending on such predictions, the agent can
move in a safe and smooth route.

However, pedestrian trajectory prediction is a great chal-
lenge due to the intrinsic uncertainty of pedestrians’ future
positions. In a crowded scene, each pedestrian dynamically
changes his/her walking speed and direction, partly attributed
to his/her interactions with surrounding pedestrians.

To make an accurate prediction, existing algorithms focus
on making full use of the interactions between pedestrians.
Early works model the interactions [7], [8], [9], [10] by hand-
crafted features. Social Force [7] models several force terms
to predict human behaviors. The approach in [8] constructs
an energy grid map to describe the interactions in crowded
scenes. However, their performances are limited by the
quality of manually designed features. Recently, data-driven
methods have demonstrated their powerful performance [11],
[12], [13], [14]. For instance, Social LSTM [11] considers
interactions among pedestrians close to each other. Social

*This work was supported by the Meituan-Dianping Group.
Yanliang Zhu, Deheng Qian, Dongchun Ren and Huaxia

Xia are with the Meituan-Dianping Group, Beijing, China.
zhuyanliang@meituan.com

Fig. 1: The structure of StarNet. StarNet mainly consists
a centralized hub network and several host networks. The
hub network collects movement information and generates a
feature which describes joint interactions among pedestrians.
Each host network, corresponding to a certain pedestrian,
queries the hub network and predicts the pedestrian’s trajec-
tory.

GAN [13] models interactions among all pedestrians. Social
Attention [14] captures spatio-temporal interactions.

Previous methods have achieved great success in trajectory
prediction. However, all these methods assume that the
complicated interactions among pedestrians can be decom-
posed into pairwise interactions. This assumption neglects
the collective influence among pedestrians in the real world.
Thus previous methods tend to fail in complicated scenes. In
the meanwhile, the number of pairwise interactions increases
quadratically as the number of pedestrians increases. Hence,
existing methods are computationally inefficient.

In this paper, we propose a new deep neural network,
StarNet, to model complicated interactions among all pedes-
trians together. As shown in Figure 1, StarNet has a star
topology, and hence the name. The central part of StarNet
is the hub network, which produces a representation r of
the interactions among pedestrians. To be specific, the hub
network takes the observed trajectories of all pedestrians and
produces a comprehensive spatio-temporal representation r
of all interactions in the crowd. Then, r is sent to each
host network. Each host network predicts one pedestrian’s
trajectory. Specifically, depending on r, each host network
exploits an efficient method to calculate the pedestrian’s
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interactions with others. Then, the host network predicts one
pedestrian’s trajectory depending on his/her interactions with
others, as well as his/her observed trajectory.

StarNet has two advantages over previous methods. First,
the representation r is able to describe not only pairwise
interactions but also collective ones. Such a comprehensive
representation enables StarNet to make accurate predictions.
Second, the interactions between one pedestrian and others
are efficiently computed. When predicting all pedestrians’
trajectories, the computational time increases linearly, rather
than quadratically, as the number of pedestrians increases.
Consequently, StarNet outperforms multiple state-of-the-arts
in terms of both accuracy and computational efficiency.

Our contributions are two-folded. First, we propose to
describe collective interactions among pedestrians, which
results in more accurate predictions. Second, we devise an
interesting topology of the network to take advantage of the
representation r, leading to computational efficiency.

The rest of this paper is organized as follows: Section II
briefly reviews related work on pedestrian trajectory predic-
tion. Section III formalizes the problem and elaborates our
method. Section IV compares StarNet with state-of-the-arts
on multiple public datasets. Section V draws our conclusion.

II. RELATED WORK

Our work mainly focuses on human path prediction. In
this section, we give a brief review of recent researches on
this domain.

Pedestrian path prediction is a great challenge due to
the uncertainty of future movements [7], [8], [10], [11],
[13], [14], [15]. Conventional methods tackle this problem
with manually crafted features. Social Force [7] extracts
force terms, including self-properties and attractive effects,
to model human behaviors. Another approach [8] constructs
an energy map to indicate the traffic capacity of each area in
the scene, and uses a fast matching algorithm to generate a
walking path. Mixture model of Dynamic pedestrian-Agents
(MDA) [10] learns the behavioral patterns by modeling
dynamic interactions and pedestrian beliefs. However, all
these methods can hardly capture complicated interactions
in crowded scenes, due to the limitation of hand-crafted
features.

Data-driven methods remove the requirement of hand-
crafted features, and greatly improve the ability to predict
pedestrian trajectories. Some attempts [11], [13], [14], [26],
[27] receive pedestrian positions and predict determined
trajectories. Social LSTM [11] devises social pooling to
deal with interpersonal interactions. Social LSTM divides
pedestrian’s surrounding area into grids, and computes pair-
wise interactions between pedestrians in a grid. Compared
with Social LSTM, other approaches [13], [15] eliminate
the limitation on a fixed area. Social GAN [13] combines
Generative Adversarial Networks (GANs) [16] with LSTM-
based encoder-decoder architecture, and sample plausible

trajectories from a distribution. Social Attention [14] esti-
mates multiple Gaussian distributions of future positions,
then generates candidate trajectories through Mixture Den-
sity Network (MDN) [17].

However, existing methods compute pairwise features,
and thus oversimplified the interactions in the real word
environment. Meanwhile, they suffer from a huge compu-
tational burden in crowded scenes. In contrast, our proposed
StarNet with novel architecture is capable of capturing joint
interactions over all pedestrians, which is more accurate and
efficient.

III. APPROACH
In this section, we first describe the formulation of the

pedestrian prediction problem. Then we provide the details
of our proposed method.

A. Problem Formulation
We assume the number of pedestrians is N. The number of

observed time steps is Tobs. And the number of time steps to
be predicted is Tpred . For the i-th pedestrian, his/her observed
trajectory is denoted as Oi = {pt

i | t = 1,2, · · · ,Tobs}, where
pt

i represents his/her coordinates at time step t. Similarly,
the future trajectory of ground truth is denoted as Fi ={

pt
i | t = Tobs +1,Tobs +2, · · · ,Tobs +Tpred

}
.

Given such notations, our goal is to build a fast and
accurate model to predict the future trajectories {Fi}N

i=1 of all
pedestrians, based on their observed trajectories {Oi}N

i=1. In
other words, we try to find a function mapping from {Oi}N

i=1
to {Fi}N

i=1. We employ a deep neural network, which is
called StarNet, to embody this function. Specifically, StarNet
consists of two novel parts, i.e., a hub network and N host
networks. The hub network computes a representation r
of the crowd. Then, each host network predicts the future
trajectory of one pedestrian depending on the pedestrian’s
observed trajectory and r. We first describe the hub network
and then present host networks.

B. The hub network
The hub network takes all of the observed trajectories

simultaneously and produces a comprehensive representation
r of the crowd of pedestrians. The representation r includes
both spatial and temporal information of the crowd, which
is the key to describe the interactions among pedestrians.

Note that our algorithm should be invariant against isomet-
ric transformation (translation and rotation) of the pedestri-
ans’ coordinates. The invariance against rotation is achieved
by randomly rotate our training data during the training pro-
cess. While the invariance against translation is guaranteed
by calculating a translation invariant representation r.

As shown in Figure 2, the hub network produces r by two
steps. First, the hub network produces a spatial representation
of the crowd for each time step. The spatial representation
is invariant against the translation of the coordinates. Then,
the spatial representation is fed into a LSTM to produce the
spatio-temporal representation r.
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Fig. 2: The process of predicting the coordinates. At time step t, StarNet takes the newly observed (or predicted) coordinates
{pt

i}
N
i=1 (or {p̂t

i}
N
i=1) and outputs the predicted coordinates

{
p̂t+1

i

}N
i=1.

1) Spatial representation: In the first step, in order to
make the representation invariant against translation, the
hub network preprocesses the coordinates of pedestrians by
subtracting the central coordinates of all pedestrians at time
step Tobs from every coordinate.

pt
i ← pt

i −
1
N

N

∑
n=1

pTobs
n . (1)

Thus, the centralized coordinates are invariant against
translation. Such coordinates of each pedestrian are mapped
into a new space using an embedding function φ(·) with
parameters W1,

et
i =

{
φ (pt

i;W1) , i f t ∈ [1,Tobs] ,
φ (p̂t

i;W1) , i f t ∈
[
Tobs +1,Tobs +Tpred

]
,

(2)

where p̂t
i is the predicted position of the i-th pedestrian

at time step t. et
i is the spatial representation of the i-th

pedestrian’s trajectory at time step t. The embedding function
is defined as:

φ (x;W )�Wx. (3)

Then, we use a maxpooling operation to combine the
spatial representation of all pedestrians, obtaining the spatial
representation of the crowd at time step t,

st = MaxPooling
(
et

1,e
t
2, · · · ,et

N
)
, (4)

Spatial representation st contains information of the crowd
at a single time step. However, pedestrians interact with each
other dynamically. To improve the accuracy of predictions,
a spatio-temporal representation is required.

2) Spatio-temporal representation: In the second step,
the hub network feeds a set of spatial representations{

s1,s2, · · · ,sTobs
}

of sequential time steps into a LSTM.
Then, the LSTM combines all the spatial representations
in its hidden state. Thus, the hidden state of the LSTM
is a spatio-temporal representation rt of all pedestrians.

Specifically, we can calculate rt as follows:


h0
c = 0,

et = φ (st ;W2) ,
[ot

c,ht
c] = LST M

(
ht−1

c ,et ;W3
)
,

rt = φ (ot
c;W4) ,

(5)

where W2 and W4 are the embedding weights, W3 is the
weight of LSTM. ot

c and ht
c are the output and hidden state

of the LSTM respectively.
Note that, rt depends on the observed trajectories of

all pedestrians. Hence, our algorithm is able to consider
complicated interactions among multiple pedestrians. This
property allows our algorithm to produce accurate predic-
tions. Meanwhile, rt is able to be obtained in a single forward
propagation of the hub network at each time step. In other
words, the time complexity of computing interactions among
pedestrians is linear to the number of pedestrians N. This
property allows our algorithm to be computationally effi-
cient. By contrast, conventional algorithms compute pairwise
interactions, leading to oversimplification of the interactions
among pedestrians. Also, the number of pairwise interactions
increases quadratically as N increases.

C. The host networks
The spatio-temporal representation rt is then employed by

host networks. For the i-th pedestrian, the host network first
embeds the observed trajectory Oi, and then combines the
embedded trajectory with the spatio-temporal representation
rt , predicting the future trajectory. Specifically, the host
network predicts the future trajectory by two steps.

First, the host network takes the observed trajectory Oi and
the spatio-temporal representation rt as input and generates
an integrated representation qt

i ,

qt
i =

{
rt �φ (pt

i;W5) , i f t ∈ [1,Tobs] ,
rt �φ (p̂t

i;W5) , i f t ∈
[
Tobs +1,Tobs +Tpred

]
,
(6)

where W5 is the embedding weight, and � denotes the
point-wise multiplication. qt

i depends on both the trajectory



14　>　美团点评 2019 技术年货

of the i-th pedestrian and the interactions between the i-th
pedestrian and others in the crowd.

Second, the host network predicts the future trajectory of
the i-th pedestrian depending on the observed trajectory Oi
and the integrated representation qt

i . To encourage the host
network to produce non-deterministic predictions, a random
noise z, which is sampled from a Gaussian distribution with
mean 0 and variance 1, is concatenated to the input of the
host network. Specifically, the host network encodes the
observed trajectory Oi with the hidden state hTobs

ei , i.e.,



dp0
i = 0,

dpt−1
i = pt

i −pt−1
i ,

[ot
ei,ht

ei] = LST ME
(
ht−1

ei ,
[
qt

i,dpt−1
i

]
;W6

)
,

t ∈ [1,Tobs],

(7)

where LST ME(·) with weight W6 denotes the encoding
procedure. Then, the host network proceeds with



[
ot

di,h
t
di

]
= LST MD

(
ht−1

di ,
[
qt

i,dp̂t−1
i ,z

]
;W7

)
,

dp̂t
i = φ

(
ot

di;W8
)
,

p̂t
i = p̂t−1

i +dp̂t
i,

t ∈ [Tobs +1,Tobs +Tpred ],

(8)

where LST MD(·) with weight W7 is the decoding function.
W8 is the embedding weight of the output layer. And the
initial states are set according to,


hTobs

di = hTobs
ei ,

p̂Tobs
i = pTobs

i ,

dp̂Tobs
i = pTobs

i −pTobs−1
i .

(9)

D. Implementation Details

The network configuration of StarNet is detailed in TA-
BLE I.

TABLE I: Network Configuration of AstoridNet

Weight Weight Dimension
W1 64x2

W2 64x64

W3 64x32, 32x1(bias)

W4 32x64

W5 64x2

W6 64x66, 64x1(bias)

W7 64x74, 64x1(bias)

W8 2x64

We train the proposed StarNet with the loss function
applied in [13]. Specifically, at the training stage, StarNet
produces multiple predicted trajectories for each pedestrian.
Each predicted trajectory {F̂ik}K

k=1 has a distance to the
ground truth trajectory Fi. Only the smallest distance is
minimized. Mathematically, the loss function is,

L =
1

NTpred
minK

k=1

N

∑
j=1

Tobs+Tpred

∑
t=Tobs+1

(
p̂t

jk −pt
j

)2
, (10)

where K is the number of sampled trajectories. This loss
function improves the training speed and stability. Moreover,
we employ an Adam optimizer and set the learning rate to
0.0001.

In practice, all host networks share the same weights,
since pedestrians in a scenario have the same behavioral
patterns, such as variable-speed movement, sharp turning and
so on. In our approach, we use shared weights to learn the
aforementioned behavioral patterns. Each host network con-
tains specific LSTM state which captures certain pedestrian’s
behavior, and predicts the pedestrian’s future trajectory. The
observed trajectories of all pedestrians form a batch, which
is fed into one single implementation of the host network.
In this way, the prediction for all pedestrians is able to be
obtained in a single forward propagation.

IV. EXPERIMENTS

We evaluate our model on two human crowded trajectory
datasets: ETH [24] and UCY [25]. These datasets have 5
sets with 4 different scenes. In these scenes, there exist chal-
lenging interactions, such as walking side by side, collision
avoidance and changing directions. Following the settings in
[11], [13], [14], we train our model on 4 sets and test on the
remaining one.

We compare our StarNet with three state-of-the-arts in-
cluding Social LSTM, Social GAN and Social Attention.
Besides, we test the basic LSTM-based encoder-decoder
model, which does not consider the interactions among
pedestrians, as a baseline.

Following [11], [13], [14], we compare these methods in
terms of the Average Displacement Error (ADE) and Final
Displacement Error (FDE). The ADE is defined as the mean
Euclidean distance between predicted coordinates and the
ground truth. Specifically, all methods output 8 coordinates
uniformly sampled from the predicted trajectory. Then the
distance between such 8 points with the ground truth is
accumulated as the ADE. The FDE is the distance between
the final point of the predicted trajectory and the final point
of the ground truth. All these methods are trained with the
loss Eq. (10) to deal with multimodal distribution during
evaluation. Besides, we compare the computational time of
all these methods. All experiments are conducted on the same
computational platform with an NVIDIA Tesla V100 GPU.

A. Experimental Results

1) Accuracy: As shown in TABLE II, StarNet outper-
forms the others in most cases. A possible explanation
is that StarNet considers the collective influence among
pedestrians all together to make more accurate predictions. In
comparison, other state-of-the-arts only model the pairwise
interactions between pedestrians.

Interestingly, we notice that the test datasets include multi-
ple senses. In these scenes, StarNet has the smallest variances
of ADE and FDE, which means that StarNet is robust against
the changes of scenes.
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TABLE II: Comparison of Prediction Errors

Metric Dataset LSTM Social LSTM Social GAN Social Attention StarNet (Ours)

ADE

ZARA-1 0.25 0.27 0.21 1.66 0.25
ZARA-2 0.31 0.33 0.27 2.30 0.26

UNIV 0.36 0.41 0.36 2.92 0.21
ETH 0.70 0.73 0.61 2.45 0.31

HOTEL 0.55 0.49 0.48 2.19 0.46
Average ADE - 0.43 0.45 0.39 2.30 0.30

Variance of ADE - 0.028 0.026 0.021 0.166 0.008

FDE

ZARA-1 0.53 0.56 0.42 2.64 0.47
ZARA-2 0.65 0.70 0.54 4.75 0.53

UNIV 0.77 0.84 0.75 5.95 0.40
ETH 1.45 1.48 1.22 5.78 0.54

HOTEL 1.17 1.01 0.95 4.94 0.91
Average FDE - 0.91 0.91 0.78 4.81 0.57

Variance of FDE - 0.118 0.101 0.802 1.394 0.031

TABLE III: Comparison of Computational Time

Metric LSTM Social LSTM Social GAN Social Attention StarNet (Ours)
Inference Time (Seconds) 0.029 0.504 0.202 3.714 0.073

Number of Paramters (Kilo) 22.87 156.06 108.03 874.95 31.90

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 3: Predicted trajectories and the corresponding ground truths. Different colors indicate different trajectories. The
trajectories of ground truth are labeled with dots. The predicted trajectories are labeled with triangles.

To assess StarNet qualitatively, we illustrate the prediction
results in 4 scenes, as shown in Figure 3. In each scene,
the left sub-figure presents the observed trajectories and the

predicted trajectories of all pedestrians. The right sub-figure
shows the trajectories of ground truth.

We can observe that StarNet could handle complicated
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interactions among pedestrians. Most predicted trajectories
accurately reflect the pedestrians’ movements and have no
collisions with other trajectories. However, there are some
failure cases due to the multimodal distribution of future
trajectories. For example, in 3(c), the predictions for the
blue and green trajectories fail to match the ground truth.
We argue that although these predicted trajectories do not
match the ground truth, these trajectories are still plausible
in crowded scenes.

2) Computational time cost: When deployed in mobile
robots and autonomous vehicles, the prediction algorithm
needs to be invoked with a high frequency. Hence the
computational time of the prediction algorithm is a crucial
property.

As shown in TABLE III, the basic LSTM model is the
fastest model since the model takes no interactions among
pedestrians into consideration. StarNet is the second fastest
model. Specifically, StarNet is 51 times faster than Social
Attention, 7 times faster than Social LSTM, and 3 times
faster than Social GAN. Meanwhile, the number of param-
eters employed by StarNet is less than state-of-the-arts by a
large margin. StarNet is computationally efficient since the
interpersonal interactions among pedestrians are computed
in a single forward propagation, as discussed in Section II.

V. CONCLUSION

In this paper, we propose StarNet, which has a star
topology, for pedestrian trajectory prediction. StarNet learns
complicated interpersonal interactions and predicts future
trajectories with low time complexity. We apply a centralized
hub network to model the spatio-temporal interactions among
pedestrians. Then the host network takes full advantage of
the spatio-temporal representation and predicts pedestrians’
trajectories. We demonstrate that StarNet outperforms state-
of-the-arts in multiple experiments.
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Abstract Online food-delivery platforms are expanding choice, allowing customers to order from
a wide variety of restaurants. As an industrial level technology, route planning algo-
rithm is required to be fast enough. This paper proposes a two-stage fast heuristic for
route planning, which solves the problem at millisecond level. To speed up the algo-
rithm, we further utilize geographic information so that invalid search attempts are
prevented. Finally, we compare our algorithm with brute-force algorithm and several
state-of-the-art algorithms to show its effectiveness and efficiency.

Keywords food delivery, pickup and delivery, time windows, heuristics

1. Introduction

“Tap, order, and eat, all at home.” Food ordering and delivery is a fast growing market all

over the world. Worldwide, food ordering and delivery companies, such as Grubhub, Uber

Eats, and Just Eat, are developing a $94 billion online food ordering and delivery business

[4]. In China, over 300 billion customers order food from Meituan-Dianping food delivery

platform with more than 3.6 million restaurants to choose, exceeding 24 million daily orders

and deliveries in 2018 [9].

As shown in Figure 1, after a customer orders a meal, the food delivery platform pushes

the order to a restaurant. At the same time, the platform dispatches this order to a driver,

and plans a route for him. The dispatching system is shown in Figure 2. A real route is

shown in Figure 3, in which the driver is planned to pick up four meals before delivering

two of the meals to corresponding customers. Then, the driver pick up the last meal and

deliver the rest meals to customers. At rush hours like lunch time, a driver may run with

10 orders for example, which means that he has to scurry across 10 restaurants and 10

customers. Under this setting, there are 2.38× 1015 ways of route planning, which is hard

to solve in limited time.

In this paper, we introduce an algorithm to find a satisfactory route, aiming to minimize

delays and the route length. The algorithm is required to be highly efficient because it is

an essential part of dispatching algorithm. Different from traditional logistics, food deliv-

ery dispatching algorithm is an online algorithm, which matches thousands of orders with

thousands of drivers each time. Thus, route planning algorithm has to plan a route within

milliseconds.

1
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Figure 1. Food ordering and delivery process.

Figure 2. Dispatching algorithm.

Figure 3. A real route.

2. Literature Review

Food delivery route planning problem is rarely studied in the literature. The most relevant
literature is the Pickup and Delivery Problem with Time Windows (PDPTW), which models
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Figure 4. A typical route.

a fleet of vehicles serving a collection of transportation requests. Each request specifies a
pickup location and a delivery location. Vehicles are routed to serve all requests, optimizing
a certain objective function such as total distance traveled, with precedence constraint and
capacity constraint.

Problem in this paper can be modeled as the single vehicle PDPTW, which considers only
one vehicle and several customers. [14] propose a variable-depth search algorithm, which
produces near optimal solutions most of the time, but may end up with an infeasible solution.
Then, they have to spend a large computation time with simulated annealing. [5] present a
genetic algorithm, a simulated annealing algorithm and a hill climbing approach. They find
simulated annealing algorithm is superior to other algorithms but requires longer running
time.

A mathematical formulation of the PDPTW involving a single depot is given in [2]. [13]
further formulate a general version of the PDPTW, and present a survey of the problem.
In the past two decades, several exact algorithms and heuristics are designed to solve the
PDPTW. Exact algorithms include column generation [2], branch-and-cut [7], and branch-
and-cut-and-price [11, 1]. Heuristics include tabu search [10], insertion-based heuristic [8],
adaptive large neighborhood search [12] and simulated annealing [15].

The PDPTW is applied to problems arising in logistics and public transit, such as trans-
porting goods [2] and home health care [6]. The problems are usually in large scale and are
acceptable to be solved in hours. However, food delivery route planning problem demands
very low computational complexity. As a core algorithm supporting the food delivery plat-
form, the time complexity of route planning algorithm is limited in only several milliseconds.
In other words, algorithms proposed by papers above are not applicable to our problem. In
this paper, we propose a new heuristic approach for PDPTW problem to meet this restrict
time complexity requirement.

3. Algorithm

In this section, we present our Two-Stage Fast Heuristic (TSFH), including initialization
and local search strategies. Figure 4 shows a typical route, where ti is the Estimated Time
of Arrival (ETA) [3] of a delivery point, which is shown to customer and restaurant as
soon as the order generates. Ti is estimated time of driver’s action, calculated by our route
planning algorithm, and di is traveling distance from previous point to i-th point. Then we
have Formula 1 presenting our objective, which minimizes delays and route length.

min

n∑
i=1

[max(Ti − ti,0)+ di] (1)

The problem has two constraints. (1) precedence constraint: A driver has to pick up meals
before delivery. (2) capacity constraint: The total capacity of a driver is limited during the
route.
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Figure 5. Possible ways of insertion.

The TSFH has two stages. Stage I initializes one feasible solution with greedy search
mechanism. To speed up the insertion, we utilize geographic knowledge to avoid invalid
search. Stage II adjusts the solution with two local search strategies.

3.1. Stage I: Initialization

3.1.1. Initialization with Greedy Insertion The initialization stage can be described
as follows. First, we sort orders according to their ETA. Then, we plan the first order. Due
to precedence constraint, the only plan is to plan pickup point before delivery point. For
the following orders, their pickup and delivery points are inserted into the route according
to the objective. For instance, as shown in Figure 5, we have 6 ways to insert the second
order to the route. We greedily insert pickup point and delivery point to minimize delays
and route length. According to this criterion, Figure 5(a) is the optimal way to insert.
After all points are inserted, we formulate a feasible route.

3.1.2. Speeding up with Geographic Information In China, restaurants are geo-
graphically close to each other. For example, restaurants at a central business district build-
ing may serve 60% customers within 5 kilometers. Also, customers are geographically close,
most customers are gathered in certain communities. Thus, we can cluster pickup and deliv-
ery points by hierarchical clustering. With these clusters, we speed up the initialization stage
by reducing “bad” insertion attempts.

Clustering algorithm is described as follows, where D is a given range, say 100 meters. For
each point i, if it is not classified, it generates a new group and makes itself a center point.
For each point j, if it not classified, it is classified into group i if dij <D; if it is classified
to group k and is not a center point, then if dij < dkj , we reclassify it into group i.

Lemma 1 (Insertion Before Own Group). If point j is classified to group i, then
inserting point j to groups before group i is worse than inserting point j to group i.

Proof. Point j is classified to group i. Inserting point j to group k before group i must
be worse than directly inserting it to group i, because the route length is longer, but no
delivery point benefits from shorter delays.

Figure 6 gives an example illustrating the above lemma. Pickup and delivery points are
classified into three groups. Consider insertion of ‘green’ pickup and delivery points, given
‘blue’ points and ‘orange’ points inserted beforehand. We can see from Figure 6, inserting a
point before its own group (Figure 6 (b)) is always worse than inserting it to its own group
(Figure 6 (a)), as the driver travels more and customers may suffer from more delays.
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Figure 6. Insertion before own group.

Figure 7. Insertion after own group.

Lemma 2 (Insertion After Own Group). If point j is classified to group i, then we
can always find an insertion better than the insertion of point j to group k after group i.

Proof. Point j is classified to group i. Inserting point j to group k after group i must be
worse than inserting it between group k and group k+1 (if group k is the last group, then
inserting it to the end), because the route length is longer, but no delivery point benefits
from shorter delays.

Figure 7 gives an example illustrating the above lemma. Pickup and delivery points are
classified into three groups. Consider insertion of ‘blue’ pickup and delivery points, given
‘green’ points and ‘orange’ points inserted beforehand. We can see from Figure 7, inserting
a point between a group after its own group (Figure 7 (b)) is always worse than inserting
it to the last position (Figure 7 (a)), as the driver travels more and customers may suffer
from more delays.

From Lemma 1 and Lemma 2, we conclude that point j is only worth to insert when it is
inserted into its group, say group i, or between groups after group i. This conclusion reduces
invalid insertion attempts and speeds up the algorithm.

3.2. Stage II: Local Search

Figure 8 shows the local search stage. After initialization stage, the local search improves
the route by looking for better solutions at solution neighborhood. Our algorithm considers
two kinds of neighborhood. First, we find delivery points with most delays and move them
backward to an optimal position, which is shown in Figure 8 (A). Second, we find delivery
points with most sufficient time and move them forward to an optimal position, which is
shown in Figure 8 (B). Each time we find a better solution, the best solution is replaced.
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Figure 8. Local search.

4. Numerical Results and Experiments

In this section, we provide numerical experiments to compare different algorithms. First, we
compare initialization without speeding up technique and fast initialization with speeding
up technique to show the effectiveness of initialization stage. Then, we use brute-force search
to find the optimal solution to each problem as a baseline. Moreover, we compare our TSFH
algorithm with the optimal solution to show our TSFH can generate near optimal solutions
in limited time. Moreover, the TSFH is compared with several state-of-the-art algorithms
to show its effectiveness and efficiency.

Instances are randomly sampled from real route planning problems. We partition the
instance set into three sets, ‘< 10’, ‘10 to 20’, and ‘> 20’, according to the number of pickup
and delivery points.

In the following tables, we show performance of algorithms by total score and average
time. Total score is the sum of delays (in minutes) and route length (in kilometers). Average
time is the computation time of one instance (in milliseconds).

All experiments are run on a MacBook Pro with 2.2 GHz processors / 16 GB RAM in
Mac-OS. The algorithms are coded in Java using Eclipse.

4.1. Comparison of Initialization and Fast Initialization

To show the effectiveness of initialization and local search, and efficiency of speeding up
technique, we compare initialization and fast initialization using geographic information.

From Table 1, we can see that initialization can be sped up considering geographic
information. For example, the average running time of the ‘10 to 20’ instance set is reduced
from 0.37ms to 0.21ms, which is 43.2% faster. Moreover, effectiveness of initialization is not
harmed by speeding up as total score is nearly the same. Therefore, we have shown that our
algorithm can generate near optimal solutions within several milliseconds.

4.2. Optimal Solutions by Brute-force Algorithm

The optimal solution can be solved using a brute-force search algorithm. Consider a driver
with n pickup tasks and n delivery tasks, the complexity of brute-force search algorithm can
be derived as follows. A solution from 2n points’ full permutation can only be feasible when
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Table 1. Numerical results of initialization and fast initialization.

Instance Algorithm Total Score Delays Route Length Average Time

> 20 Initialization 240.88 232.17 8.71 2.60
> 20 Fast Initialization 242.48 233.74 8.73 1.08

10 to 20 Initialization 46.29 41.35 4.94 0.37
10 to 20 Fast Initialization 46.11 41.19 4.93 0.21

< 10 Initialization 28.59 24.09 4.50 0.14
< 10 Fast Initialization 28.67 24.18 4.50 0.10

Table 2. Numerical results of our TSFH and brute-force algorithm.

Instance Algorithm Total Score Delays Route Length Average Time

> 20 TSFH 223.30 214.79 8.51 7.08

10 to 20 TSFH 42.48 37.65 4.83 1.01

< 10 TSFH 27.35 22.94 4.40 0.41
< 10 Brute-force 27.17 22.79 4.38 199.31

Table 3. Numerical results of our TSFH and the state-of-the-art algorithms.

Instance Algorithm Total Score Delays Route Length Average Time

> 20 TSFH 223.30 214.79 8.51 7.08
> 20 VDS [14] 877.80 869.63 8.18 25.96
> 20 SA [5] 1195.50 1185.74 9.75 64.71

10 to 20 TSFH 42.48 37.65 4.83 1.01
10 to 20 VDS [14] 77.34 72.66 4.68 6.23
10 to 20 SA [5] 101.02 96.18 4.84 35.59

< 10 TSFH 27.35 22.94 4.40 0.41
< 10 VDS [14] 35.17 30.95 4.23 3.51
< 10 SA [5] 36.87 32.62 4.24 25.64
< 10 Brute-force 27.17 22.79 4.38 199.31

each pair of pickup and delivery points follows precedence constraint. Thus, the complexity

is O

(
(2n)!

2n

)
, if capacity constraint is not considered. As the complexity grows dramatically

with the number of pickup or delivery points, we only provide results of ‘< 10’ instance sets.

4.3. Comparison of Our TSFH and Brute-force Algorithm

In this subsection, we compare the TSFH with brute-force algorithm, which generates opti-

mal solutions to each instance. Table 2 shows the results. From ‘< 10’ instance set, we can

find that our full algorithm uses only 0.21% of average time but generates nearly the same

performance than brute-force algorithm. We can also see that the average computation time

of the TSFH is limited in milliseconds in ‘10 to 20’ and ‘< 10’ instances. As most instances

generated in real life have less than 20 pickup and delivery points, we show the TSFH is

efficient enough to solve food delivery route planning problem within several milliseconds.
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4.4. Comparison of Our TSFH and the State-of-the-art Algorithms

In this subsection, we compare the best results of our TSFH to those of variable-depth
search (VDS) [14] and simulated annealing (SA) [5]. The comparative results are listed in
Table 3. We can see that the TSFH outperforms VDS and SA in terms of total score
and average running time. Particularly, in ‘< 10’ instances, the TSFH reaches near optimal
solutions, which is 0.7% above optimal, while VDS and SA are 29.4% and 35.7% above
optimal respectively. Moreover, the TSFH also solves ‘< 10’ instances in 0.41ms per instance,
while VDS and SA solve those instances in 3.51ms and 25.64ms, respectively. Real life
food delivery route planning demands high running speed. The TSFH can solve all ‘< 10’
instances in 1 millisecond, while the computation time of VDS and SA is not acceptable.
Therefore, we conclude that the TSFH is more effective and efficient than the state-of-art
algorithms, and more suitable to be applied to real life problem solving.

5. Conclusions

In this paper, food delivery route planning problem is modeled as the single vehicle pickup
and delivery problem with time windows (PDPTW). Unlike traditional approaches solving
the single vehicle PDPTW, our paper presents a two-stage fast heuristic (TSFH). In stage
I, a feasible and near optimal solution is generated in a greedy heuristic way. With restau-
rants and customers location cluster information, our algorithm is accelerated by avoiding
bad searching attempts. In stage II, we improve the solution in stage I by exploiting two
neighborhoods. From our numerical results, we represent the effectiveness and efficiency by
comparing our results with those from brute-force algorithm and some best algorithms in
the literature. Our TSFH algorithm generates near optimal solutions within milliseconds.
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Abstract
Aspect-based sentiment analysis (ABSA) aims to
predict fine-grained sentiments of comments with
respect to given aspect terms or categories. In pre-
vious ABSA methods, the importance of aspect has
been realized and verified. Most existing LSTM-
based models take aspect into account via the at-
tention mechanism, where the attention weights are
calculated after the context is modeled in the for-
m of contextual vectors. However, aspect-related
information may be already discarded and aspect-
irrelevant information may be retained in classic L-
STM cells in the context modeling process, which
can be improved to generate more effective context
representations. This paper proposes a novel vari-
ant of LSTM, termed as aspect-aware LSTM (AA-
LSTM), which incorporates aspect information in-
to LSTM cells in the context modeling stage be-
fore the attention mechanism. Therefore, our AA-
LSTM can dynamically produce aspect-aware con-
textual representations. We experiment with sever-
al representative LSTM-based models by replacing
the classic LSTM cells with the AA-LSTM cell-
s. Experimental results on SemEval-2014 Datasets
demonstrate the effectiveness of AA-LSTM.

1 Introduction
With increasing numbers of comments on the Internet, sen-
timent analysis is attracting interests from both research and
industry. Aspect-based sentiment analysis is a fundamental
and challenging task in sentiment analysis, which aims to in-
fer the sentiment polarity of sentences with respect to given
aspects. For example, “Great salad but the soup tastes bad”.
It’s obvious that the opinion over the ‘salad’ is positive while
the opinion over the ‘soup’ is negative. In this case, aspect-
s are included in the comments, and predicting aspect sen-
timent polarities of this kind of comments is termed aspect
term sentiment analysis (ATSA) or target sentiment analysis

∗This work was partially done during Bowen’s internship at
Meituan-Dianping Group.

†Corresponding author.

(TSA). There is another case where the aspect is not explic-
itly included in the comment. For example, “Although the
dinner is expensive, waiters are so warm-hearted!”. We can
observe that there are two aspect categories mentioned in this
comment: price and service with completely opposite senti-
ment polarities. Predicting aspect sentiment polarities of this
kind of comments is termed aspect category sentiment analy-
sis (ACSA), and the aspect categories usually belong to a pre-
defined set. In this paper, we collectively refer aspect catego-
ry, aspect term/target as aspect. And our goal is aspect-based
sentiment analysis (ABSA) including ATSA and ACSA.

As deep learning have been successfully exploited in vari-
ous NLP tasks [Zhen et al., 2017; Yang and Mitchell, 2017;
Xu et al., 2017; Devamanyu et al., 2018], many neural net-
works have been applied to ABSA. With the ability of han-
dling long-term dependencies, Long Short-Term Memory
neural network (LSTM) [Hochreiter and Schmidhuber, 1997]
is widely used for context modeling in ABSA, and many re-
cent best performing ABSA methods are based on LSTM
because of its significant performance [Tang et al., 2016a;
Wang et al., 2016; Chen et al., 2017; Ma et al., 2017;
Devamanyu et al., 2018; Xin et al., 2018]. Current main-
stream LSTM-based ABSA models adopt LSTM to model
the context, obtaining hidden state vectors for each token in
the input sequence. After obtaining contextual vector repre-
sentations, they utilize attention mechanism to produce the
attention weight vector.

Recent well performing LSTM-based ABSA models can
be divided into three categories according to their way of
modeling context: (1) “Attention-based LSTM with aspect
embedding (ATAE-LSTM)” [Wang et al., 2016] and “model-
ing inter-aspect dependencies by LSTM (IAD-LSTM)” [De-
vamanyu et al., 2018] model the context and aspect together
via concatenating the aspect vector to the word embeddings
of context words in the embedding layer. (2) “Interactive at-
tention networks (IAN)” [Ma et al., 2017] and “aspect fusion
LSTM (AF-LSTM)” [Tay et al., 2018] model the contex-
t alone and utilize the aspect to compute context’s attention
vector in the attention mechanism. (3) “Recurrent attention
network on memory (RAM)” [Chen et al., 2017] introduces
relative position information of context words and the given
target into their hidden state vectors.
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The first category conducts simple joint modeling of con-
texts and aspects. In the secondary category, on behalf of
most of the existing LSTM-based methods, the models on-
ly use context words as input when modeling the contex-
t, so they get the same context hidden states vectors when
analysing comments containing multiple aspects. The second
category models the context separately while utilizing the as-
pect information in context’s attention calculation. And the
method in the third category additionally multiplies a relative
position weight. However, no aspect information is consid-
ered in the LSTM cells of all the above methods.Therefore,
after context modeling, their hidden state vectors contain the
information that is important to the “overall” comment se-
mantics. This is determined by the functionality of classic
LSTM. It retains important information and filters out use-
less information at the sentence-level semantic, in the hidden
states corresponding to every context word.

In contrast, for the aspect-based sentiment analysis task,
we think the context modeling should be aspect-aware. For a
specific aspect, on one hand, some of the semantic informa-
tion of the whole sentence is useless. These aspect irrelevant
information would adversely harm the final sentiment repre-
sentation, especially in the situation where multiple aspects
exist in one comment. This is because when LSTM encoun-
ters an important token for the overall sentence semantics,
this token’s information is retained in every follow-up hidden
state. Consequently, even if a good attention vector is pro-
duced via the attention mechanism, these hidden state vectors
also contain useless information which is magnified to some
extent. On the other hand, information that is important to the
aspect may be not sufficiently kept in hidden states because
of their small contribution to the overall semantic information
of the sentence.

We take two typical examples to illustrate the two issues.
First, “The salad is so delicious but the soup is unsatisfied.”.
There are two aspects (salad and soup) of opposite sentiment
polarity. When judging the sentiment polarity of the ‘soup’,
the word ‘delicious’ which modifies ‘salad’ is also important
to the sentence-level semantics of the whole comment, and its
information is preserved in the hidden states vectors of subse-
quent context words, including ‘unsatisfied’. So even if ‘un-
satisfied’ is assigned a large weight in the attention vector, the
information of ‘delicious’ will still be integrated into the final
context representation and enlarged. Second, “Pizza is won-
derful compared to the last time we enjoyed at another place,
and the beef is not bad, by the way.” Obviously, this sentence
is mainly about pizza so classic LSTM will retain a lot of in-
formation that modifies ‘pizza’ when modeling context. But
when judging the polarity of beef, because traditional LSTM
does not know the aspect is ‘beef’, much-retained ‘pizza’ in-
formation causes that the information of ‘beef’ is not valued
enough in hidden state vectors. We define the above issues as
the aspect-unaware problem in the context modeling process
of current methods. To the best of our knowledge, this is the
first time to propose this problem.

In this paper, we propose a novel LSTM variant termed
aspect-aware LSTM (AA-LSTM) to introduce the aspect into
context modeling process. In every time step, on one hand,
the aspect vector can select key information in the context ac-

cording to the aspect and keep the important information in
context words’ hidden states. On the other hand, the vector
formed aspect information can influent the process of context
modeling and filter useless information for the given aspect.
So AA-LSTM can generate more effective context hidden s-
tates based on the given aspect. This can be seen as an earlier
attention operation on context words. It is worth mentioning
that though our AA-LSTM model takes the aspect as input,
it does not actually fuse the aspect vector into the representa-
tion of the context, but only utilize the aspect to influence the
process of modeling context via controlling information flow.

The main contributions of our work can be summarized as
follows:

• We propose a novel LSTM variant termed as aspect-
aware LSTM (AA-LSTM) to introduce the aspect into
the process of modeling context.

• Considering that the aspect is the core information in
this task, we fully exploit its potential by introducing
it into the LSTM cells. We design three aspect gates
to introduce the aspect into the input gate, forget gate
and output gate in classic LSTM. AA-LSTM can utilize
aspect to improve the information flow and then generate
more effective aspect-specific context representation.

• We apply our proposed AA-LSTM to several represen-
tative LSTM-based models, and the experimental results
on the benchmark datasets demonstrate the validity and
generalization of our proposed AA-LSTM.

2 Related Work
In this section, we survey some representative studies in the
aspect-based sentiment analysis (ABSA). ABSA is the task
of predicting the sentiment polarity of a comment with re-
spect to a set of aspects terms or categories included in the
context. The biggest challenge faced by ABSA is how to ef-
fectively represent the aspect-specific sentiment information
of the comment [Ma et al., 2018]. Although some traditional
methods for target sentiment analysis also achieve promis-
ing results, they are labor intensive because they have mostly
focused on feature engineering or massive extra linguistic re-
sources [Kiritchenko et al., 2014; Wagner et al., 2014].

As deep learning achieved breakthrough success in repre-
sentation learning, many recent works utilized deep neural
networks to automatically extract features and generate the
context embedding which is a dense vector formed represen-
tation of the comment.

Since the attention mechanism was first introduced to the
NLP field [Bahdanau et al., 2014], many sequence-based ap-
proaches utilize it to generate more aspect-specific final rep-
resentations. Attention mechanism in ABSA takes aspect in-
formation (usually aspect embedding) and the hidden states
of every context word (generated by context modeling) as in-
put and produces a probability distribution in which impor-
tant parts of the context will be assigned bigger weights ac-
cording to the aspect information.

There are some CNN-based [Xue and Li, 2018] and memo-
ry networks (MNs)-based models for context modeling [Tang
et al., 2016b; Tay et al., 2017; Wang et al., 2018]. [Tay et
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al., 2017] model dyadic interactions between aspect and sen-
tence using neural tensor layers and associative layers with
rich compositional operators. [Wang et al., 2018] argue that
for the case where several sentences are the same except for
different targets, relying attention mechanism alone is insuffi-
cient. It designed several memory networks having their own
characters to solve the problem.

In particular, LSTM networks are widely used in contex-
t modeling because of its advantages for sequence modeling
[Tang et al., 2016a; Ma et al., 2017; Devamanyu et al., 2018;
Wang et al., 2016; Tay et al., 2018; Ma et al., 2018;
Liu and Zhang, 2017; Yang et al., 2017]. We divide re-
cent well-performing methods into three categories accord-
ing to the process of modeling context: First, modeling the
context and aspect via concatenating the aspect vector to the
word embeddings of context words in the embedding layer.
[Wang et al., 2016] firstly propose aspect embedding, and
their ATAE-LSTM learns to attend to different parts of the
context according to the aspect embedding. Although IAD-
LSTM [Devamanyu et al., 2018] model inter-dependencies
between multiple aspects of one comment through LSTM af-
ter getting the final representation of the context, it is con-
sistent with ATAE-LSTM [Wang et al., 2016] in the way of
context modeling.

Second, modeling the context alone and utilizing the aspect
to compute context’s attention vector in the attention mech-
anism. The main difference among this category of models
is the calculation method of the attention mechanism. [Ma
et al., 2017] propose an interactive attention network (IAN)
which models targets and contexts separately. Then it learn-
s the interactions between the context and target in attention
mechanism utilizing the averages of context’s hidden states
and target’s hidden states. [Tay et al., 2018] propose Aspec-
t Fusion LSTM (AF-LSTM) model with a novel association
layer after LSTM to model word-aspect relation utilizing cir-
cular convolution and circular correlation.

Third, introducing relative position information of the giv-
en target and context words to the hidden state vectors of con-
text words. RAM [Chen et al., 2017] realizes that the hidden
state vector of a word will be assigned a larger weight if it
is closer to the target through a relative location vector. This
operation is conducted before their recurrent attention layer
consisting of GRU cells.

Unlike all the above methods, we propose to introduce he
aspect information into the process of context modeling. Our
proposed AA-LSTM introduces the aspect into the LSTM
cells to control information flow. AA-LSTM can not only
select key information in the context according to the aspect
and keep the important information in context words’ hidden
state vectors, but also filter useless information for the given
aspect. Then AA-LSTM can generate more effective aspect-
specific context hidden state vectors.

3 Aspect-Aware LSTM
In this section we describe our proposed aspect-aware LST-
M (AA-LSTM) in detail. Classic LSTM contains three gates
(input gate, forget gate and output gate) to control the infor-
mation flow. We argue that aspect information should be con-

sidered into LSTM cells to improve the information flow. It
is intuitive that in every time step the degree that aspect is
integrated into the three gates of classic LSTM should be d-
ifferent. Therefore, we incorporate aspect vector into clas-
sic LSTM cells and design three aspect gates to control how
much the aspect vector is imported into the input gate, forget
gate and output gate respectively. In this way, we can utilize
the previous hidden state and the aspect itself to control how
much the aspect is imported in the three gates of classic L-
STM. Figure 1 illustrates the architecture of the AA-LSTM
network and it can be formalized as follows:

ai = σ(Wai [A, ht−1] + bai) (1)
It = σ(WI [xt, ht−1] + ai ⊙A+ bI) (2)
af = σ(Waf [A, ht−1] + baf ) (3)
ft = σ(Wf [xt, ht−1] + af ⊙A+ bf ) (4)

C̃t = tanh(WC [xi, ht−1] + bC) (5)

Ct = ft ⊙ Ct−1 + It ⊙ C̃t (6)
ao = σ(Wao [A, ht−1] + bao) (7)
ot = σ(Wo [xt, ht−1] + ao ⊙A+ bo) (8)
ht = ot ∗ tanh(Ct) (9)

where xt represents the input embedding vector of the con-
text word corresponding to time step t, A stands for the as-
pect vector, ht−1 is previous hidden state, ht is the hidden
state of this time step, σ and tanh are sigmoid and hyper-
bolic tangent functions, ⊙ stands for element-wise multipli-
cation, Wai, Waf , Wao ∈ Rda×(dc+da) and WI , Wf , WC ,
Wo ∈ Rdc×2dc are the weighted matrices, bai, baf , bao ∈
Rda, bI , bf , bC , bo ∈ Rdc are biases and da, dc stand for the
aspect vector’s dimension and the number of hidden cells at
AA-LSTM respectively. It, ft, ot ∈ Rdc stand for the in-
put gate, forget gate and output gate respectively. The in-
put gate controls the extent of updating the information from
the current input. The forget gate is responsible for selecting
some information from last cell state. The output gate con-
trols how much the information in current cell state is out-
put to be the hidden state vector of this time step. Similarly,
ai, af , ao ∈ Rda stand for the aspect-input gate, aspect-forget
gate and aspect-output gate respectively. The three aspect-
based gates determine the extent of integrating the aspect in-
formation into the input gate, forget gate and output gate.

Our proposed AA-LSTM takes two strands of inputs: con-
text word embeddings and the aspect vector. At each time
step, the context word entering the AA-LSTM dynamically
varies according to the sequence of words in the sentence,
while the aspect vector is identical. Specifically, aspect vec-
tor is the representation of the target in TSA, and it is the
aspect embedding in ACSA. Next, we describe the different
components of our proposed AA-LSTM in detail.

3.1 Input Gates
The input gate It controls how much new information can be
transferred to the cell state. While the aspect-input gate ai
controls how much the aspect is transferred to the input gate
It. The difference between the AA-LSTM and the classical
LSTM lies in the weighted aspect vector input of It. The
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Figure 1: The overall architecture of AA-LSTM network

weight of aspect vector ai is computed by ht−1 and A. ht−1

can be regarded as the previous semantic representation of
the partial sentences which has been processed in the past
time steps. Hence, the extent of the aspect’s integration into
It is decided by the previous semantic representation and the
aspect vector A.

3.2 Forget Gates
The forget gate ft abandons trivial information and retain-
s key information from last cell state Ct−1. Similarly, the
aspect-input gate af controls how much the aspect vector is
transferred to the forget gate ft. The difference between the
AA-LSTM and the classical LSTM in ft is the introduction
of weighted aspect vector. And the weight of aspect vector af
is computed by ht−1 and A. Therefore, the extent of the as-
pect’s integration into It is decided by the previous semantic
representation and the aspect vector A.

3.3 Candidate Cell and Current Cell
The candidate cell C̃t represents the alternative input content.
The current cell Ct updates its cell state by selecting impor-
tant information from last cell state Ct−1 and C̃t.

From Equation 6 we can observe that the alternative input
content C̃t aspects two strands of inputs: the last hidden state
ht−1 and the input embedding xt of this time step. So the
hidden states in each time step contain the semantic informa-
tion of the previous sentence segment. In the classical LSTM,
information that is more important to the overall sentence se-
mantics is more likely to be preserved in the hidden states
vectors of the subsequent time steps. However, for some in-
formation which is retained because of its contribution to the
semantics of the whole sentence, it may be noisy when judg-
ing the sentiment polarity of a given aspect. And the infor-
mation that is crucial to analyze the given aspect’s sentiment
may be neglected due to its less contribution to the overal-
l sentence. As demonstrated in the Introduction section, we
define this phenomenon as an aspect-unaware problem in the
process of context modeling.

Our proposed AA-LSTM can solve this problem by intro-
ducing aspect to the process of modeling context to control
the flow of information. Information that is important for

predicting the given aspect’s sentiment polarity can be pre-
served in the hidden states vectors. In addition, as shown in
Equation 6, the alternative input content does not include the
aspect information. So the AA-LSTM only utilizes the given
aspect to influent the information flow instead of integrating
the aspect information into the hidden state vectors.

3.4 Output Gates
The output gate ot controls the extent of the information flow
from the current cell state to the hidden state vector of this
time step. Similarly, the aspect-output gate ao controls the
extent of the aspect’s influence on the output gate It. The
difference between our proposed AA-LSTM and the classi-
cal LSTM in ot is the introduction of weighted aspect vector
into ot. And the weight of aspect vector ao is computed by
ht−1 and A. Therefore, the degree of how much the aspect
information is integrated into ot is decided by the previous
semantic representation and the aspect vector A.

4 Experiment
In this section, we introduce the tasks, the datasets, the eval-
uation metric, the models for comparison and the implemen-
tation details.

4.1 Tasks Definition
We conduct experiments on two subtasks of aspect sentimen-
t analysis: aspect term sentiment analysis (ATSA) or target
sentiment analysis (TSA) and aspect category sentiment anal-
ysis (ACSA). The former infers sentiment polarities of given
target entities contained in the context. The latter infers sen-
timent polarities of generic aspects such as ‘service’ or ‘food’
which may or may not be found in the context, and the aspects
belong to a predefined set. In this paper, these two kinds of
tasks are both considered and they are collectively named as
aspect-based sentiment analysis (ABSA).

4.2 Datasets
We experiment on SemEval 2014 [Pontiki et al., 2014] task
4 datasets which consist of laptop and restaurant reviews
and are widely used benchmarks in many previous work-
s [Tang et al., 2016a; Wang et al., 2016; Ma et al., 2017;
Chen et al., 2017; Devamanyu et al., 2018; Tay et al., 2018;
Wang et al., 2018]. We remove the reviews having no as-
pect or the aspects with sentiment polarity of “conflict”. The
dataset we used consists of reviews with at least one aspect
labeled with sentiment polarities of positive, neutral and neg-
ative. For ATSA, we adopt Laptop and Restaurant datasets;
And for ACSA, we adopt the Restaurant dataset. 20% of the
training data is used as the development set. Full statistics of
SemEval 2014 task 4 datasets are given in Table 1.

4.3 Evaluation Metric
Since the two tasks are both multi-class classification tasks,
we adopt F1-Macro as our evaluation measure. And there
are some other methods that use strict accuracy (Acc) [Wang
et al., 2016; Ma et al., 2017; Chen et al., 2017; Devamanyu
et al., 2018] for evaluation, which measures the percentage
of correctly predicted samples in all samples. Therefore, we
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Task Dataset Pos Neg Neu

ATSA

Restaurant Train 2164 807 637
Restaurant Test 728 196 196
Laptop Train 994 870 464
Laptop Test 341 128 169

ACSA Restaurant Train 2179 839 500
Restaurant Test 657 222 94

Table 1: Statistic of all datasets

use these two metrics (F1-Macro and Acc) to evaluate the
models’ performances.

Generally, higher Acc can verify the effectiveness of the
system though it biases towards the majority class, and F1-
Macro provides more indicative information because the task
is a multi-class problem.

4.4 Models for Comparison
In order to verify the advantages of our proposed AA-LSTM
compared to classic LSTM, we choose some representative
LSTM-based models to replace their original LSTM with our
proposed AA-LSTM.

In Introduction and Related Work sections, we have divide
recent well-performing methods into three categories accord-
ing to their processes of modeling context. In order to prove
the generalization ability of our model, we select a represen-
tative model from each of these categories for experiments.
We choose ATAE-LSTM, IAN, and RAM as the representa-
tives of the three categories of models because their architec-
tures are novel and they are taken as comparative methods in
many works. We also compare our model with the baseline
LSTM model. We introduce them in detail as follows:

LSTM. This is the baseline that ignores targets and only
models contexts using one LSTM network. The last hidden
state is regarded as the final sentiment representation.

ATAE-LSTM. It concatenates the aspect embedding to the
word embeddings of context words and uses aspect embed-
ding to produce the attention vector. For ATSA, we take the
average of the embeddings of the target words as the aspect
embedding which is concatenated to the word embeddings of
the context words.

IAN. It models context and target separately and selects im-
portant information from them via two interactive attention
mechanisms. The target and context can have impacts on the
generation of their representations interactively and their rep-
resentations are concatenated as the final aspect-specific sen-
timent representations. For the ACSA task, we omit the mod-
eling of the target and use the aspect embedding to produce
the attention vector of context words.

RAM. It utilizes relative location to assign weights to orig-
inal context hidden state vectors and then learns the attention
vector in a recurrent attention mechanism consisting of GRU
cell. It can only be applied to ATSA. For the consistent of
comparison, we replaced the deep bidirectional LSTM in the
original RAM with a unidirectional single-layer LSTM.

We also choose two state-of-the-art methods that are
Memory Networks-based and LSTM-based respectively:

Target-sensitive Memory Network. [Wang et al., 2018]
construct six target-sensitive memory networks (TMNs)
which have their own characteristics to resolve target sensi-
tivity and got some improvement. We choose the NP (hops)
and JCI (hops) that perform best on Laptop and Restaurant,
respectively.

Inter-Aspect Dependencies LSTM. [Devamanyu et al.,
2018] model aspect-based sentential representations as a se-
quence to capture the inter-aspect dependencies.

We don’t reimplement the above two models and the re-
sults are retrieved from their original papers.

4.5 Implementation Details
We implement the models in Tensorflow. We initialize all
word embeddings by Glove [Jeffrey et al., 2014] and out-of-
vocabulary words by sampling from the uniform distribution
U(−0.1, 0.1). Initial values of all weight matrices are sam-
pled from uniform distribution U(−0.1, 0.1) and initial val-
ues of all biases are zeros. All embedding dimensions are set
to 300 and the batch size is set as 16. We minimize the loss
function to train our models using Adam optimizer [Diederik
and Jimmy, 2014] with the learning rate set as 0.001. To avoid
over fitting, we adopt the dropout strategy with p = 0.5 and
the coefficient of L2 normalization in the loss function is set
to 0.01. All models use softmax classifier.

For ACSA, we initialize all aspect embeddings by sam-
pling from the uniform distribution U(−0.1, 0.1). As for the
input aspect vector (A) of our proposed AA-LSTM which is
replaced with the classic LSTM in the above models, we set
it as follows:

Aspect Term Sentiment Analysis. We use the average of
word embeddings of the target words as A except for IAN.
For IAN, we use the average of the hidden states vectors of
target words as A.

Aspect Category Sentiment Analysis. For all models, we
use the aspect embedding as A.

We implement all models under the same experiment set-
tings to make sure the improvements based on the original
models come from the replacement of classic LSTM with our
proposed AA-LSTM.

5 Results and Analysis
Our experimental results are illustrated in Table 2. We can
observe that our proposed AA-LSTM and its substitution in
other models has an overall advantage over classic LSTMs on
their corresponding original models. It especially achieves
higher F1-Macro which can better illustrate the overall per-
formances of the models in multiple classes as the classes
are unbalanced. On the ATSA task, except for the F1-Macro
score on Restaurant, the performances of our variants over-
pass the performances of the representative state-of-the-art
models. In the implementation of the experiment, the only
difference between original models and their variants is the
substitution of classic LSTM. As we replace the original L-
STM with our AA-LSTM, the performance improvement can
demonstrate the pure effectiveness of our AA-LSTM.
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Task and Dataset
ATSA ACSA

Laptop Restaurant Restaurant
Model F1-Macro Acc F1-Macro Acc F1-Macro Acc
LSTM 59.77 65.99 61.04 75.00 70.07 81.71

ATAE-LSTM 61.28 66.93 64.47 77.41 70.15 82.12
IAN 64.54 70.53 65.67 78.48 70.81 83.25
RAM 67.05 71.32 65.84 78.57 - -

IAD-LSTM - 72.5 - 79.0 - -
JCI (hops) 67.2 71.8 68.8 78.8 - -
NP (hops) 67.8 72.4 66.0 75.7 - -
AA-LSTM 61.45 66.93 66.24 78.21 75.00 83.45

ATAE-LSTM (AA) 62.10 69.28 66.46 78.21 74.51 83.97
IAN (AA) 65.62 71.94 68.71 79.29 74.43 84.69
RAM (AA) 68.47 73.20 68.15 78.13 - -

Table 2: Comparisons of all models on three datasets. Last four models are our proposed AA-LSTM models, and the last three models with
suffix “(AA)” is the variants in which the original classic LSTM is replaced with our proposed AA-LSTM. The results of IAD-LSTM, JCI
(hops) and NP (hops) are retrieved from the original papers. Best scores are marked in bold.

Compared with LSTM, AA-LSTM’s improvements on
macro are up to 7% and 6% on Restaurant for ATSA and AC-
SA respectively. Like LSTM, AA-LSTM also directly uses
the last hidden state vector as the final sentiment representa-
tion sent to the classifier. But because the aspect is introduced
into the process of modeling context, the semantics of the last
hidden state vector of AA-LSTM is aspect-specific. In fact,
not only in the last hidden layer, but also in all hidden states
vectors, the information which is important for determining
the emotional polarity of the aspect is kept, and other useless
information is filtered, which makes the context modeling re-
sult much better than LSTM.As the classifiers are the same,
the reason AA-LSTM performs better than LSTM is that the
final sentiment representation of AA-LSTM is more effective.

AA-LSTM’s performance even surpassed ATAE-LSTM
and exceed all original models on F1-macro for ACSA. It
is worth mentioning that all baselines utilizes the attention
mechanism and ATAE-LSTM also models the context and as-
pect together via concatenating aspect to every word embed-
dings of context words. In contrast, AA-LSTM only model-
s the context without any other processing. This proves that
AA-LSTM’s result of modeling context is aspect-specific and
effective. This is because the aspect information is used in the
modeling process to control the flow of information, retain
and filter information, who performs as earlier attention.

ATAE-LSTM (AA)’s performance exceeds ATAE-LSTM
and AA-LSTM. This shows that AA-LSTM can be compat-
ible with other components of ATAE-LSTM, improving the
whole model’s performance. ATAE-LSTM represents a cate-
gory of models that combine the context and aspect together
via concatenating the aspect vector to context word embed-
dings. So the experimental results verify that although the
input embeddings contain aspect information, it doesn’t con-
flict with the aspect information introduced in AA-LSTM.

IAN represents a category of models which encode the
context alone and utilize the aspect to compute contexts’
attention vector in the attention mechanism. IAN-LSTM
(AA)’s overall performance exceeds IAN and AA-LSTM.
This proves that the hidden states vectors generated by

AA-LSTM can collaborate with the attention mechanism to
achieve better performance.

RAM utilizes the relative location vector to assign weight-
s to original context word hidden state vectors, and calcu-
lates the attention vector via a recurrent attention mechanis-
m which is more complex than other baseline models. It is
worth noting that compared with RAM, RAM (AA) has more
improvement than other original models and their variants.
This is because the advantage of AA-LSTM is amplified in
RAM. In RAM (AA), while the tokens closer to the target are
assigned larger weights, AA-LSTM keeps more important in-
formation about the target in the tokens closer to the target:
adjectives, modifying phrases, clauses, etc. In addition, the
context hidden states vectors generated by AA-LSTM and the
recurrent mechanism work together to produce more effective
final sentiment representation.

6 Conclusion
In this paper, we argue that aspect-related information may be
discarded and aspect-irrelevant information may be retained
in classic LSTM cells. To address this problem, we propose
a novel LSTM variant termed as Aspect-Aware LSTM. Due
to the introduction of the aspect into the process of modeling
context, our proposed Aspect-aware LSTM can select impor-
tant information about the given target and filter out the use-
less information via information flow control. Aspect-Aware
LSTM can not only generate more effective contextual vec-
tors than classic LSTM, but also be compatible with other
modules.
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ABSTRACT
Knowledge graphs capture structured information and relations
between a set of entities or items. As such knowledge graphs repre-
sent an attractive source of information that could help improve
recommender systems. However, existing approaches in this do-
main rely on manual feature engineering and do not allow for an
end-to-end training. Here we propose Knowledge-aware Graph Neu-
ral Networks with Label Smoothness regularization (KGNN-LS) to
provide better recommendations. Conceptually, our approach com-
putes user-specific item embeddings by first applying a trainable
function that identifies important knowledge graph relationships
for a given user. This way we transform the knowledge graph
into a user-specific weighted graph and then apply a graph neural
network to compute personalized item embeddings. To provide bet-
ter inductive bias, we rely on label smoothness assumption, which
posits that adjacent items in the knowledge graph are likely to have
similar user relevance labels/scores. Label smoothness provides
regularization over the edge weights and we prove that it is equiva-
lent to a label propagation scheme on a graph. We also develop an
efficient implementation that shows strong scalability with respect
to the knowledge graph size. Experiments on four datasets show
that our method outperforms state of the art baselines. KGNN-LS
also achieves strong performance in cold-start scenarios where
user-item interactions are sparse.
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propagation
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1 INTRODUCTION
Recommender systems are widely used in Internet applications to
meet user’s personalized interests and alleviate the information
overload [4, 29, 32]. Traditional recommender systems that are
based on collaborative filtering [13, 22] usually suffer from the cold-
start problem and have trouble recommending brand new items that
have not yet been heavily explored by the users. The sparsity issue
can be addressed by introducing additional sources of information
such as user/item profiles [23] or social networks [22].

Knowledge graphs (KGs) capture structured information and
relations between a set of entities [8, 9, 18, 24–28, 33, 34, 36]. KGs
are heterogeneous graphs inwhich nodes correspond to entities (e.g.,
items or products, as well as their properties and characteristics) and
edges correspond to relations. KGs provide connectivity information
between items via different types of relations and thus capture
semantic relatedness between the items.

The core challenge in utilizing KGs in recommender systems
is to learn how to capture user-specific item-item relatedness cap-
tured by the KG. Existing KG-aware recommender systems can be
classified into path-based methods [8, 33, 36], embedding-based
methods [9, 26, 27, 34], and hybrid methods [18, 24, 28]. However,
these approaches rely on manual feature engineering, are unable to
perform end-to-end training, and have poor scalability. Graph Neu-
ral Networks (GNNs), which aggregate node feature information
from node’s local network neighborhood using neural networks,
represent a promising advancement in graph-based representation
learning [3, 5–7, 11, 15]. Recently, several works developed GNNs
architecture for recommender systems [14, 19, 28, 31, 32], but these
approaches are mostly designed for homogeneous bipartite user-
item interaction graphs or user-/item-similarity graphs. It remains
an open question how to extend GNNs architecture to heterogeneous
knowledge graphs.

In this paper, we develop Knowledge-aware Graph Neural Net-
works with Label Smoothness regularization (KGNN-LS) that extends
GNNs architecture to knowledge graphs to simultaneously capture
semantic relationships between the items as well as personalized
user preferences and interests. To account for the relational hetero-
geneity in KGs, similar to [28], we use a trainable and personalized
relation scoring function that transforms the KG into a user-specific
weighted graph, which characterizes both the semantic information
of the KG as well as user’s personalized interests. For example, in
the movie recommendation setting the relation scoring function
could learn that a given user really cares about “director” relation
between movies and persons, while somebody else may care more
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about the “lead actor” relation. Using this personalized weighted
graph, we then apply a graph neural network that for every item
node computes its embedding by aggregating node feature infor-
mation over the local network neighborhood of the item node. This
way the embedding of each item captures it’s local KG structure in
a user-personalized way.

A significant difference between our approach and traditional
GNNs is that the edge weights in the graph are not given as in-
put. We set them using user-specific relation scoring function that
is trained in a supervised fashion. However, the added flexibility
of edge weights makes the learning process prone to overfitting,
since the only source of supervised signal for the relation scoring
function is coming from user-item interactions (which are sparse
in general). To remedy this problem, we develop a technique for
regularization of edge weights during the learning process, which
leads to better generalization. We develop an approach based on
label smoothness [35, 38], which assumes that adjacent entities in
the KG are likely to have similar user relevancy labels/scores. In
our context this assumption means that users tend to have similar
preferences to items that are nearby in the KG. We prove that label
smoothness regularization is equivalent to label propagation and
we design a leave-one-out loss function for label propagation to
provide extra supervised signal for learning the edge scoring func-
tion. We show that the knowledge-aware graph neural networks
and label smoothness regularization can be unified under the same
framework, where label smoothness can be seen as a natural choice
of regularization on knowledge-aware graph neural networks.

We apply the proposed method to four real-world datasets of
movie, book, music, and restaurant recommendations, in which the
first three datasets are public datasets and the last is from Meituan-
Dianping Group. Experiments show that our method achieves sig-
nificant gains over state-of-the-art methods in recommendation
accuracy. We also show that our method maintains strong recom-
mendation performance in the cold-start scenarios where user-item
interactions are sparse.

2 RELATEDWORK
2.1 Graph Neural Networks
Graph Neural Networks (or Graph Convolutional Neural Networks,
GCNs) aim to generalize convolutional neural networks to non-
Euclidean domains (such as graphs) for robust feature learning.
Bruna et al. [3] define the convolution in Fourier domain and calcu-
late the eigendecomposition of the graph Laplacian, Defferrard et al.
[5] approximate the convolutional filters by Chebyshev expansion
of the graph Laplacian, and Kipf et al. [11] propose a convolutional
architecture via a first-order approximation. In contrast to these
spectral GCNs, non-spectral GCNs operate on the graph directly
and apply “convolution” (i.e., weighted average) to local neighbors
of a node [6, 7, 15].

Recently, researchers also deployed GCNs in recommender sys-
tems: PinSage [32] applies GCNs to the pin-board bipartite graph in
Pinterest. Monti et al. [14] and Berg et al. [19] model recommender
systems as matrix completion and design GCNs for representation
learning on user-item bipartite graphs. Wu et al. [31] use GCNs
on user/item structure graphs to learn user/item representations.
The difference between these works and ours is that they are all

designed for homogeneous bipartite graphs or user/item-similarity
graphs where GCNs can be used directly, while here we investigate
GCNs for heterogeneous KGs. Wang et al. [28] use GCNs in KGs
for recommendation, but simply applying GCNs to KGs without
proper regularization is prone to overfitting and leads to perfor-
mance degradation as we will show later. Schlichtkrull et al. also
propose using GCNs to model KGs [17], but not for the purpose of
recommendations.

2.2 Semi-supervised Learning on Graphs
The goal of graph-based semi-supervised learning is to correctly
label all nodes in a graph given that only a few nodes are labeled.
Prior work often makes assumptions on the distribution of labels
over the graph, and one common assumption is smooth variation of
labels of nodes across the graph. Based on different settings of edge
weights in the input graph, these methods are classified as: (1) Edge
weights are assumed to be given as input and therefore fixed [1,
37, 38]; (2) Edge weights are parameterized and therefore learnable
[10, 21, 35]. Inspired by these methods, we design a module of
label smoothness regularization in our proposed model. The major
distinction of our work is that the label smoothness constraint is
not used for semi-supervised learning on graphs, but serves as
regularization to assist the learning of edge weights and achieves
better generalization for recommender systems.

2.3 Recommendations with Knowledge Graphs
In general, existing KG-aware recommender systems can be clas-
sified into three categories: (1) Embedding-based methods [9, 26,
27, 34] pre-process a KG with knowledge graph embedding (KGE)
[30] algorithms, then incorporate learned entity embeddings into
recommendation. Embedding-based methods are highly flexible in
utilizing KGs to assist recommender systems, but the KGE algo-
rithms focus more on modeling rigorous semantic relatedness (e.g.,
TransE [2] assumeshead+relation = tail ), which are more suitable
for graph applications such as link prediction rather than recom-
mendations. In addition, embedding-based methods usually lack
an end-to-end way of training. (2) Path-based methods [8, 33, 36]
explore various patterns of connections among items in a KG (a.k.a
meta-path or meta-graph) to provide additional guidance for rec-
ommendations. Path-based methods make use of KGs in a more
intuitive way, but they rely heavily on manually designed meta-
paths/meta-graphs, which are hard to tune in practice. (3) Hybrid
methods [18, 24, 28] combine the above two categories and learn
user/item embeddings by exploiting the structure of KGs. Our pro-
posed model can be seen as an instance of hybrid methods.

3 PROBLEM FORMULATION
We begin by describing the KG-aware recommendations problem
and introducing notation. In a typical recommendation scenario, we
have a set of usersU and a set of itemsV . The user-item interaction
matrix Y is defined according to users’ implicit feedback, where
yuv = 1 indicates that user u has engaged with item v , such as
clicking, watching, or purchasing. We also have a knowledge graph
G = {(h, r , t)} available, in which h ∈ E, r ∈ R, and t ∈ E denote
the head, relation, and tail of a knowledge triple, E and R are the set
of entities and relations in the knowledge graph, respectively. For
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Figure 1: Overview of our proposed KGNN-LS model. The original KG is first transformed into a user-specific weighted graph,
on which we then perform feature propagation using a graph neural network with the label smoothness regularization. The
two modules constitute the complete loss function L.

example, the triple (The Silence of the Lambs, film.film.star, Anthony
Hopkins) states the fact that Anthony Hopkins is the leading actor in
film “The Silence of the Lambs”. Inmany recommendation scenarios,
an item v ∈ V corresponds to an entity e ∈ E (e.g., item “The
Silence of the Lambs” in MovieLens also appears in the knowledge
graph as an entity). The set of entities E is composed from items
V (V ⊆ E) as well as non-items E\V (e.g. nodes corresponding
to item/product properties). Given user-item interaction matrix Y
and knowledge graph G, our task is to predict whether user u has
potential interest in item v with which he/she has not engaged
before. Specifically, we aim to learn a prediction function ŷuv =
F (u,v |Θ,Y,G), where ŷuv denotes the probability that user u will
engage with item v , and Θ are model parameters of function F .

We list the key symbols used in this paper in Table 1.

Symbol Meaning
U = {u1, · · · } Set of users
V = {v1, · · · } Set of items

Y User-item interaction matrix
G = (E,R) Knowledge graph
E = {e1, · · · } Set of entities
R = {r1, · · · } Set of relations

E\V Set of non-item entities
su (r ) User-specific relation scoring function
Au Adjacency matrix of G w.r.t. user u
Du Diagonal degree matrix of Au
E Raw entity feature

H(l ), l = 0, ...,L − 1 Entity representation in the l-th layer
W(l ), l = 0, ...,L − 1 Transformation matrix in the l-th layer

lu (e), e ∈ E Item relevancy labeling function
l∗u (e), e ∈ E Minimum-energy labeling function
l̂u (v), v ∈ V Predicted relevancy label for item v

R(Au ) Label smoothness regularization on Au

Table 1: List of key symbols.

4 OUR APPROACH
In this section, we first introduce knowledge-aware graph neural
networks and label smoothness regularization, respectively, then
we present the unified model.

4.1 Preliminaries: Knowledge-aware Graph
Neural Networks

The first step of our approach is to transform a heterogeneous KG
into a user-personalized weighted graph that characterizes user’s
preferences. To this end, similar to [28], we use a user-specific rela-
tion scoring function su (r ) that provides the importance of relation
r for user u: su (r ) = д(u, r), where u and r are feature vectors of
user u and relation type r , respectively, and д is a differentiable
function such as inner product. Intuitively, su (r ) characterizes the
importance of relation r to user u. For example, a user may be more
interested in directors of movies, but another user may care more
about the lead actors of movies.

Given user-specific relation scoring function su (·) of user u,
knowledge graph G can therefore be transformed into a user-
specific adjacency matrix Au ∈ R |E |×|E | , in which the (i, j)-entry
A
i j
u = su (rei ,ej ), and rei ,ej is the relation between entities ei and

ej in G.1 Ai ju = 0 if there is no relation between ei and ej . See the
left two subfigures in Figure 1 for illustration. We also denote the
raw feature matrix of entities as E ∈ R |E |×d0 , where d0 is the di-
mension of raw entity features. Then we use multiple feed forward
layers2 to update the entity representation matrix by aggregating
representations of neighboring entities. Specifically, the layer-wise
forward propagation can be expressed as

Hl+1 = σ
(
D−1/2
u AuD

−1/2
u HlWl

)
, l = 0, 1, · · · ,L − 1. (1)

1In this work we treat G an undirected graph, so Au is a symmetric matrix. If both
triples (h, r1, t ) and (t, r2, h) exist, we only consider one of r1 and r2. This is due to
the fact that: (1) r1 and r2 are the inverse of each other and semantically related; (2)
Treating Au symmetric will greatly increase the matrix density.
2There are several candidate designs for the architecture of our model, e.g., GCN [11]
or GraphSAGE [7]. Here we use GCN [11] as our base model.
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In Eq. (1), Hl is the matrix of hidden representations of entities in
layer l , and H0 = E. Au is to aggregate representation vectors of
neighboring entities. In this paper, we set Au ← Au + I, i.e., adding
self-connection to each entity, to ensure that old representation
vector of the entity itself is taken into consideration when updating
entity representations. Du is a diagonal degree matrix with entries
Dii
u =

∑
j A

i j
u , therefore, D

−1/2
u is used to normalize Au and keep

the entity representation matrix Hl stable. Wl ∈ Rdl×dl+1 is the
layer-specific trainable weight matrix, σ is a non-linear activation
function, and L is the number of layers.

A single GNN layer computes the representation of an entity via a
transformed mixture of itself and its immediate neighbors in the KG.
We can therefore naturally extend the model to multiple layers to
explore users’ potential interests in a broader and deeper way. The
final output is HL ∈ R |E |×dL , which is the entity representations
that mix the initial features of themselves and their neighbors up
to L hops away. Finally, the predicted engagement probability of
user u with item v is calculated by ŷuv = f (u, vu ), where vu (i.e.,
the v-th row of HL) is the final representation vector of item v ,
and f is a differentiable prediction function, for example, inner
product or a multilayer perceptron. Note that vu is user-specific
since the adjacency matrix Au is user-specific. Furthermore, note
that the system is end-to-end trainable where the gradients flow
from f (·) via GNN (parameter matrix W) to д(·) and eventually to
representations of users u and items v .

4.2 Label Smoothness Regularization
It is worth noticing a significant difference between our model and
GNNs: In traditional GNNs, edge weights of the input graph are
fixed; but in our model, edge weights D−1/2

u AuD
−1/2
u in Eq. (1) are

learnable (including possible parameters of function д and feature
vectors of users and relations) and also requires supervised training
like W. Though enhancing the fitting ability of the model, this will
inevitably make the optimization process prone to overfitting, since
the only source of supervised signal is from user-item interactions
outside GNN layers. Moreover, edge weights do play an essential
role in representation learning on graphs, as highlighted by a large
amount of prior works [10, 20, 21, 35, 38]. Therefore, more regular-
ization on edge weights is needed to assist the learning of entity
representations and to help generalize to unobserved interactions
more efficiently.

Let’s see how an ideal set of edgeweights should be like. Consider
a real-valued label function lu : E → R on G, which is constrained
to take a specific value lu (v) = yuv at node v ∈ V ⊆ E. In our
context, lu (v) = 1 if useru finds the itemv relevant and has engaged
with it, otherwise lu (v) = 0. Intuitively, we hope that adjacent
entities in the KG are likely to have similar relevancy labels, which
is known as label smoothness assumption. This motivates our choice
of energy function E:

E(lu ,Au ) = 1
2

∑
ei ∈E,ej ∈E

A
i j
u
(
lu (ei ) − lu (ej )

)2
. (2)

We show that the minimum-energy label function is harmonic by
the following theorem:

Theorem 1. The minimum-energy label function

l∗u = argmin
lu :lu (v)=yuv ,∀v ∈V

E(lu ,Au ) (3)

w.r.t. Eq. (2) is harmonic, i.e., l∗u satisfies

l∗u (ei ) =
1
Dii
u

∑
ej ∈E

A
i j
u l∗u (ej ), ∀ei ∈ E\V . (4)

Proof. Taking the derivative of the following equation

E(lu ,Au ) = 1
2

∑
i, j

A
i j
u
(
lu (ei ) − lu (ej )

)2

with respect to lu (ei ) where ei ∈ E\V , we have
∂E(lu ,Au )
∂lu (ei ) =

∑
j
A
i j
u
(
lu (ei ) − lu (ej )

)
.

The minimum-energy label function l∗u should satisfy that
∂E(lu ,Au )
∂lu (ei )

����
lu=l ∗u

= 0.

Therefore, we have

l∗u (ei ) =
1

∑
j A

i j
u

∑
j
A
i j
u l∗u (ej ) =

1
Dii
u

∑
j
A
i j
u l∗u (ej ), ∀ei ∈ E\V .

�

The harmonic property indicates that the value of l∗u at each
non-item entity ei ∈ E\V is the average of its neighboring entities,
which leads to the following label propagation scheme [39]:

Theorem 2. Repeating the following two steps:
(1) Propagate labels for all entities: lu (E) ← D−1

u Aulu (E), where
lu (E) is the vector of labels for all entities;

(2) Reset labels of all items to initial labels: lu (V) ← Y[u,V]�,
where lu (V) is the vector of labels for all items and Y[u,V] =
[yuv1 ,yuv2 , · · · ] are initial labels;

will lead to lu → l∗u .

Proof. Let lu (E) =
[
lu (V)

lu (E\V)

]
. Since lu (V) is fixed on Y[u,V],

we are only interested in lu (E\V). We denote P = D−1
u Au (the

subscript u is omitted from P for ease of notation), and partition
matrix P into sub-matrices according to the partition of lu :

P =
[
PVV PV E
PEV PEE

]
.

Then the label propagation scheme is equivalent to
lu (E\V) ← PEV Y[u,V]� + PEElu (E\V). (5)

Repeat the above procedure, we have

lu (E\V) = lim
n→∞(PEE )

nl
(0)
u (E\V) +

( n∑
i=1

(PEE )i−1
)
PEV Y[u,V]�,

(6)
where l (0)u (E\V) is the initial value for lu (E\V). Now we show
that limn→∞(PEE )nl (0)u (E\V) = 0. Since P is row-normalized and
PEE is a sub-matrix of P, we have

∃ϵ < 1,
∑
j
PEE [i, j] ≤ ϵ,

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

971



论文精选　<　37

(a) Without the KG (b) L = 1 (c) L = 2 (d) L = 1 for another user (e) LS regularization

Figure 2: (a) Analogy of a physical equilibriummodel for recommender systems; (b)-(d) Illustration of the effect of the KG; (e)
Illustration of the effect of label smoothness regularization.

for all possible row index i . Therefore,
∑
j
(PEE )n [i, j] =

∑
j

(
(PEE )(n−1)PEE

)
[i, j]

=
∑
j

∑

k

(PEE )(n−1)[i,k] PEE [k, j]

=
∑

k

(PEE )(n−1)[i,k]
∑
j
PEE [k, j]

≤
∑

k

(PEE )(n−1)[i,k] ϵ

≤ · · · ≤ ϵn .

As n goes infinity, the row sum of (PEE )n converges to zero, which
implies that (PEE )nl (0)u (E\V) → 0. It’s clear that the choice of
initial value l (0)u (E\V) does not affect the convergence.

Since limn→∞(PEE )nl (0)u (E\V) = 0, Eq. (6) becomes

lu (E\V) = lim
n→∞

( n∑
i=1

(PEE )i−1
)
PEV Y[u,V]�.

Denote

T = lim
n→∞

n∑
i=1

(PEE )i−1 =
∞∑
i=1

(PEE )i−1,

and we have

T − TPEE =
∞∑
i=1

(PEE )i−1 −
∞∑
i=1

(PEE )i = I.

Therefore, we derive that

T = (I − PEE )−1,
and

lu (E\V) = (I − PEE )−1PEV Y[u,V]�.
This is the unique fixed point and therefore the unique solution to
Eq. (5). Repeating the steps in Theorem 2 leads to

lu (E) → l∗u (E) =
[

Y[u,V]�
(I − PEE )−1PEV Y[u,V]�

]
.

�

Theorem 2 provides a way for reaching the minimum-energy
of relevancy label function E. However, l∗u does not provide any
signal for updating the edge weights matrix Au , since the labeled
part of l∗u , i.e., l∗u (V), equals their true relevancy labels Y[u,V];

Moreover, we do not know true relevancy labels for the unlabeled
nodes l∗u (E\V).

To solve the issue, we propose minimizing the leave-one-out loss
[35]. Suppose we hold out a single item v and treat it unlabeled.
Then we predict its label by using the rest of (labeled) items and
(unlabeled) non-item entities. The prediction process is identical to
label propagation in Theorem 2, except that the label of item v is
hidden and needs to be calculated. This way, the difference between
the true relevancy label of v (i.e., yuv ) and the predicted label l̂u (v)
serves as a supervised signal for regularizing edge weights:

R(A) =
∑
u

R(Au ) =
∑
u

∑
v

J
(
yuv , l̂u (v)

)
, (7)

where J is the cross-entropy loss function. Given the regularization
in Eq. (7), an ideal edge weight matrix A should reproduce the
true relevancy label of each held-out item while also satisfying the
smoothness of relevancy labels.

4.3 The Unified Loss Function
Combining knowledge-aware graph neural networks and LS regu-
larization, we reach the following complete loss function:

min
W,A

L = min
W,A

∑
u,v

J (yuv , ŷuv ) + λR(A) + γ �F �22 , (8)

where �F �22 is the L2-regularizer, λ and γ are balancing hyper-
parameters. In Eq. (8), the first term corresponds to the part of
GNN that learns the transformation matrix W and edge weights A
simultaneously, while the second term R(·) corresponds to the part
of label smoothness that can be seen as adding constraint on edge
weights A. Therefore, R(·) serves as regularization on A to assist
GNN in learning edge weights.

It is also worth noticing that the first term can be seen as feature
propagation on the KG while the second term R(·) can be seen as
label propagation on the KG. A recommender for a specific user u
is actually a mapping from item features to user-item interaction
labels, i.e., Fu : Ev → yuv where Ev is the feature vector of item
v . Therefore, Eq. (8) utilizes the structural information of the KG
on both the feature side and the label side of Fu to capture users’
higher-order preferences.

4.4 Discussion
How can the knowledge graph help find users’ interests? To intu-
itively understand the role of the KG, we make an analogy with a
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Movie Book Music Restaurant
# users 138,159 19,676 1,872 2,298,698
# items 16,954 20,003 3,846 1,362

# interactions 13,501,622 172,576 42,346 23,416,418
# entities 102,569 25,787 9,366 28,115
# relations 32 18 60 7
# KG triples 499,474 60,787 15,518 160,519

Table 2: Statistics of the four datasets: MovieLens-20M
(movie), Book-Crossing (book), Last.FM (music), and
Dianping-Food (restaurant).

physical equilibrium model as shown in Figure 2. Each entity/item
is seen as a particle, while the supervised positive user-relevancy
signal acts as the force pulling the observed positive items up from
the decision boundary and the negative items signal acts as the
force pushing the unobserved items down. Without the KG (Figure
2a), these items are only loosely connected with each other through
the collaborative filtering effect (which is not drawn here for clar-
ity). In contrast, edges in the KG serve as the rubber bands that
impose explicit constraints on connected entities. When number of
layers is L = 1 (Figure 2b), representation of each entity is a mixture
of itself and its immediate neighbors, therefore, optimizing on the
positive items will simultaneously pull their immediate neighbors
up together. The upward force goes deeper in the KG with the
increase of L (Figure 2c), which helps explore users’ long-distance
interests and pull up more positive items. It is also interesting to
note that the proximity constraint exerted by the KG is personalized
since the strength of the rubber band (i.e., su (r )) is user-specific and
relation-specific: One user may prefer relation r1 (Figure 2b) while
another user (with same observed items but different unobserved
items) may prefer relation r2 (Figure 2d).

Despite the force exerted by edges in the KG, edge weights may
be set inappropriately, for example, too small to pull up the unob-
served items (i.e., rubber bands are too weak). Next, we show by
Figure 2e that how the label smoothness assumption helps regular-
izing the learning of edge weights. Suppose we hold out the positive
sample in the upper left and we intend to reproduce its label by the
rest of items. Since the true relevancy label of the held-out sample
is 1 and the upper right sample has the largest label value, the LS
regularization term R(A) would enforce the edges with arrows to
be large so that the label can “flow” from the blue one to the striped
one as much as possible. As a result, this will tighten the rubber
bands (denoted by arrows) and encourage the model to pull up the
two upper pink items to a greater extent.

5 EXPERIMENTS
In this section, we evaluate the proposed KGNN-LS model, and
present its performance on four real-world scenarios: movie, book,
music, and restaurant recommendations.

5.1 Datasets
We utilize the following four datasets in our experiments for movie,
book, music, and restaurant recommendations, respectively, in
which the first three are public datasets and the last one is from

2 4 6
shortest distance

0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty

 without common rater

 with common rater(s)

(a) MovieLens-20M

2 4 5 6 7 8 9 10 11 12   >12

shortest distance

0

0.2

0.4

0.6

p
ro

b
a
b
ili

ty

 without common rater

 with common rater(s)

(b) Last.FM

Figure 3: Probability distribution of the shortest path dis-
tance between two randomly sampled items in the KG un-
der the circumstance that (1) they have no common user in
the dataset; (2) they have common user(s) in the dataset.

Meituan-Dianping Group. We use Satori3, a commercial KG built
by Microsoft, to construct sub-KGs for MovieLens-20M, Book-
Crossing, and Last.FM datasets. The KG for Dianping-Food dataset
is constructed by the internal toolkit of Meituan-Dianping Group.
Further details of datasets are provided in Appendix A.

• MovieLens-20M4 is awidely used benchmark dataset inmovie
recommendations, which consists of approximately 20 million
explicit ratings (ranging from 1 to 5) on the MovieLens website.
The corresponding KG contains 102,569 entities, 499,474 edges
and 32 relation-types.

• Book-Crossing5 contains 1 million ratings (ranging from 0
to 10) of books in the Book-Crossing community. The cor-
responding KG contains 25,787 entities, 60,787 edges and 18
relation-types.

• Last.FM6 contains musician listening information from a set
of 2 thousand users from Last.fm online music system. The
corresponding KG contains 9,366 entities, 15,518 edges and 60
relation-types.

• Dianping-Food is provided by Dianping.com7, which con-
tains over 10 million interactions (including clicking, buying,
and adding to favorites) between approximately 2 million users
and 1 thousand restaurants. The corresponding KG contains
28,115 entities, 160,519 edges and 7 relation-types.

The statistics of the four datasets are shown in Table 2.

5.2 Baselines
We compare the proposed KGNN-LS model with the following
baselines for recommender systems, in which the first two baselines
are KG-free while the rest are all KG-aware methods. The hyper-
parameter setting of KGNN-LS is provided in Appendix B.

• SVD [12] is a classic CF-based model using inner product to
model user-item interactions. We use the unbiased version (i.e.,
the predicted engaging probability is modeled as yuv = u�v).
The dimension and learning rate for the four datasets are set
as: d = 8, η = 0.5 for MovieLens-20M, Book-Crossing; d = 8,
η = 0.1 for Last.FM; d = 32, η = 0.1 for Dianping-Food.

3https://searchengineland.com/library/bing/bing-satori
4https://grouplens.org/datasets/movielens/
5http://www2.informatik.uni-freiburg.de/~cziegler/BX/
6https://grouplens.org/datasets/hetrec-2011/
7https://www.dianping.com/
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Model MovieLens-20M Book-Crossing Last.FM Dianping-Food
R@2 R@10 R@50 R@100 R@2 R@10 R@50 R@100 R@2 R@10 R@50 R@100 R@2 R@10 R@50 R@100

SVD 0.036 0.124 0.277 0.401 0.027 0.046 0.077 0.109 0.029 0.098 0.240 0.332 0.039 0.152 0.329 0.451
LibFM 0.039 0.121 0.271 0.388 0.033 0.062 0.092 0.124 0.030 0.103 0.263 0.330 0.043 0.156 0.332 0.448

LibFM + TransE 0.041 0.125 0.280 0.396 0.037 0.064 0.097 0.130 0.032 0.102 0.259 0.326 0.044 0.161 0.343 0.455
PER 0.022 0.077 0.160 0.243 0.022 0.041 0.064 0.070 0.014 0.052 0.116 0.176 0.023 0.102 0.256 0.354
CKE 0.034 0.107 0.244 0.322 0.028 0.051 0.079 0.112 0.023 0.070 0.180 0.296 0.034 0.138 0.305 0.437

RippleNet 0.045 0.130 0.278 0.447 0.036 0.074 0.107 0.127 0.032 0.101 0.242 0.336 0.040 0.155 0.328 0.440
KGNN-LS 0.043 0.155 0.321 0.458 0.045 0.082 0.117 0.149 0.044 0.122 0.277 0.370 0.047 0.170 0.340 0.487

Table 3: The results of Recall@K in top-K recommendation.

Model Movie Book Music Restaurant
SVD 0.963 0.672 0.769 0.838
LibFM 0.959 0.691 0.778 0.837

LibFM + TransE 0.966 0.698 0.777 0.839
PER 0.832 0.617 0.633 0.746
CKE 0.924 0.677 0.744 0.802

RippleNet 0.960 0.727 0.770 0.833
KGNN-LS 0.979 0.744 0.803 0.850

Table 4: The results of AUC in CTR prediction.

• LibFM [16] is a widely used feature-based factorization model
for CTR prediction. We concatenate user ID and item ID as in-
put for LibFM. The dimension is set as {1, 1, 8} and the number
of training epochs is 50 for all datasets.

• LibFM + TransE extends LibFM by attaching an entity rep-
resentation learned by TransE [2] to each user-item pair. The
dimension of TransE is 32 for all datasets.

• PER [33] is a representative of path-based methods, which
treats the KG as heterogeneous information networks and ex-
tracts meta-path based features to represent the connectivity
between users and items. We use manually designed “user-
item-attribute-item” as meta-paths, i.e., “user-movie-director-
movie”, “user-movie-genre-movie”, and “user-movie-star-movie”
for MovieLens-20M; “user-book-author-book” and “user-book-
genre-book” for Book-Crossing, “user-musician-date_of_birth-
musician” (date of birth is discretized), “user-musician-country-
musician”, and “user-musician-genre-musician” for Last.FM;
“user-restaurant-dish-restaurant”, “user-restaurant-business_area-
restaurant”, “user-restaurant-tag-restaurant” for Dianping-Food.
The settings of dimension and learning rate are the same as
SVD.

• CKE [34] is a representative of embedding-based methods,
which combines CF with structural, textual, and visual knowl-
edge in a unified framework. We implement CKE as CF plus
a structural knowledge module in this paper. The dimension
of embedding for the four datasets are 64, 128, 64, 64. The
training weight for KG part is 0.1 for all datasets. The learning
rate are the same as in SVD.

• RippleNet [24] is a representative of hybrid methods, which
is a memory-network-like approach that propagates users’
preferences on the KG for recommendation. For RippleNet,
d = 8, H = 2, λ1 = 10−6, λ2 = 0.01, η = 0.01 for MovieLens-
20M; d = 16, H = 3, λ1 = 10−5, λ2 = 0.02, η = 0.005 for

Last.FM; d = 32, H = 2, λ1 = 10−7, λ2 = 0.02, η = 0.01 for
Dianping-Food.

5.3 Validating the Connection between G and Y
To validate the connection between the knowledge graph G and
user-item interaction Y, we conduct an empirical study where we
investigate the correlation between the shortest path distance of two
randomly sampled items in the KG and whether they have common
user(s) in the dataset, that is there exist user(s) that interacted with
both items. For MovieLens-20M and Last.FM, we randomly sample
ten thousand item pairs that have no common users and have at
least one common user, respectively, then count the distribution of
their shortest path distances in the KG. The results are presented in
Figure 3, which clearly show that if two items have common user(s)
in the dataset, they are likely to be more close in the KG. For example,
if two movies have common user(s) in MovieLens-20M, there is a
probability of 0.92 that they will be within 2 hops in the KG, while
the probability is 0.80 if they have no common user. This finding
empirically demonstrates that exploiting the proximity structure
of the KG can assist making recommendations. This also justifies
our motivation to use label smoothness regularization to help learn
entity representations.

5.4 Results
5.4.1 Comparison with Baselines. We evaluate our method in two
experiment scenarios: (1) In top-K recommendation, we use the
trained model to select K items with highest predicted click proba-
bility for each user in the test set, and choose Recall@K to evaluate
the recommended sets. (2) In click-through rate (CTR) prediction,
we apply the trained model to predict each piece of user-item pair in
the test set (including positive items and randomly selected negative
items). We use AUC as the evaluation metric in CTR prediction.

The results of top-K recommendation and CTR prediction are
presented in Tables 3 and 4, respectively, which show that KGNN-
LS outperforms baselines by a significant margin. For example,
the AUC of KGNN-LS surpasses baselines by 5.1%, 6.9%, 8.3%, and
4.3% on average in MovieLens-20M, Book-Crossing, Last.FM, and
Dianping-Food datasets, respectively.

We also show daily performance of KGNN-LS and baselines on
Dianping-Food to investigate performance stability. Figure 4 shows
their AUC score from September 1, 2018 to September 30, 2018. We
notice that the curve of KGNN-LS is consistently above baselines
over the test period; Moreover, the performance of KGNN-LS is also
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Figure 4: DailyAUC of all methods on
Dianping-Food in September 2018.

Figure 5: Effectiveness of LS regular-
ization on Last.FM.

Figure 6: Running time of all methods
w.r.t. KG size on MovieLens-20M.

r 20% 40% 60% 80% 100%
SVD 0.882 0.913 0.938 0.955 0.963
LibFM 0.902 0.923 0.938 0.950 0.959

LibFM+TransE 0.914 0.935 0.949 0.960 0.966
PER 0.802 0.814 0.821 0.828 0.832
CKE 0.898 0.910 0.916 0.921 0.924

RippleNet 0.921 0.937 0.947 0.955 0.960
KGNN-LS 0.961 0.970 0.974 0.977 0.979

Table 5: AUC of all methods w.r.t. the ratio of training set r .

with low variance, which suggests that KGNN-LS is also robust and
stable in practice.

5.4.2 Effectiveness of LS Regularization. Is the proposed LS regular-
ization helpful in improving the performance of GNN? To study the
effectiveness of LS regularization, we fix the dimension of hidden
layers as 4, 8, and 16, then vary λ from 0 to 5 to see how perfor-
mance changes. The results of R@10 in Last.FM dataset are plotted
in Figure 5. It is clear that the performance of KGNN-LS with a
non-zero λ is better than λ = 0 (the case of Wang et al. [28]), which
justifies our claim that LS regularization can assist learning the
edge weights in a KG and achieve better generalization in recom-
mender systems. But note that a too large λ is less favorable, since it
overwhelms the overall loss and misleads the direction of gradients.
According to the experiment results, we find that a λ between 0.1
and 1.0 is preferable in most cases.

5.4.3 Results in cold-start scenarios. One major goal of using KGs
in recommender systems is to alleviate the sparsity issue. To in-
vestigate the performance of KGNN-LS in cold-start scenarios, we
vary the size of training set of MovieLens-20M from r = 100% to
r = 20% (while the validation and test set are kept fixed), and report
the results of AUC in Table 5. When r = 20%, AUC decreases by
8.4%, 5.9%, 5.4%, 3.6%, 2.8%, and 4.1% for the six baselines com-
pared to the model trained on full training data (r = 100%), but the
performance decrease of KGNN-LS is only 1.8%. This demonstrates
that KGNN-LS still maintains predictive performance even when
user-item interactions are sparse.

5.4.4 Hyper-parameters Sensitivity. We first analyze the sensitivity
of KGNN-LS to the number of GNN layers L. We vary L from 1 to 4
while keeping other hyper-parameters fixed. The results are shown
in Table 6. We find that the model performs poorly when L = 4,
which is because a larger L will mix too many entity embeddings

L 1 2 3 4
MovieLens-20M 0.155 0.146 0.122 0.011
Book-Crossing 0.077 0.082 0.043 0.008

Last.FM 0.122 0.106 0.105 0.057
Dianping-Food 0.165 0.170 0.061 0.036

Table 6: R@10 w.r.t. the number of layers L.

d 4 8 16 32 64 128
MovieLens-20M 0.134 0.141 0.143 0.155 0.155 0.151
Book-Crossing 0.065 0.073 0.077 0.081 0.082 0.080

Last.FM 0.111 0.116 0.122 0.109 0.102 0.107
Dianping-Food 0.155 0.170 0.167 0.166 0.163 0.161

Table 7: R@10 w.r.t. the dimension of hidden layers d .

in a given entity, which over-smoothes the representation learning
on KGs. KGNN-LS achieves the best performance when L = 1 or 2
in the four datasets.

We also examine the impact of the dimension of hidden layers d
on the performance of KGNN-LS. The result in shown in Table 7.
We observe that the performance is boosted with the increase ofd at
the beginning, because more bits in hidden layers can improve the
model capacity. However, the performance drops when d further
increases, since a too large dimension may overfit datasets. The
best performance is achieved when d = 8 ∼ 64.

5.5 Running Time Analysis
We also investigate the running time of our method with respect to
the size of KG.We run experiments on a Microsoft Azure virtual ma-
chine with 1 NVIDIA Tesla M60 GPU, 12 Intel Xeon CPUs (E5-2690
v3 @2.60GHz), and 128GB of RAM. The size of the KG is increased
by up to five times the original one by extracting more triples from
Satori, and the running times of all methods on MovieLens-20M are
reported in Figure 6. Note that the trend of a curve matters more
than the real values, since the values are largely dependent on the
minibatch size and the number of epochs (yet we did try to align
the configurations of all methods). The result show that KGNN-LS
exhibits strong scalability even when the KG is large.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose knowledge-aware graph neural networks
with label smoothness regularization for recommendation. KGNN-
LS applies GNN architecture to KGs by using user-specific relation
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scoring functions and aggregating neighborhood information with
different weights. In addition, the proposed label smoothness con-
straint and leave-one-out loss provide strong regularization for
learning the edge weights in KGs. We also discuss how KGs ben-
efit recommender systems and how label smoothness can assist
learning the edge weights. Experiment results show that KGNN-
LS outperforms state-of-the-art baselines in four recommendation
scenarios and achieves desirable scalability with respect to KG size.

In this paper, LS regularization is proposed for recommendation
task with KGs. It is interesting to examine the LS assumption on
other graph tasks such as link prediction and node classification.
Investigating the theoretical relationship between feature propaga-
tion and label propagation is also a promising direction.
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APPENDIX
A Additional Details on Datasets
MovieLens-20M, Book-Crossing, and Last.FM datasets contain ex-
plicit feedbacks data (Last.FM provides the listening count as weight
for each user-item interaction). Therefore, we transform them into
implicit feedback, where each entry is marked with 1 indicating
that the user has rated the item positively. The threshold of positive
rating is 4 for MovieLens-20M, while no threshold is set for Book-
Crossing and Last.FM due to their data sparsity. Additionally, we
randomly sample an unwatched set of items and mark them as 0
for each user, the number of which equals his/her positively-rated
ones.

We use Microsoft Satori to construct the KGs for MovieLens-
20M, Book-Crossing, and Last.FM datasets. In each triple of Satori
KG, the head and the tail are either IDs or textual content, and the
relation follows the format “domain.head_category.tail_category”
(e.g., “book.book.author”). We first select a subset of triples from the
whole Satori KG with a confidence level greater than 0.9. Then we
collect Satori IDs of all valid movies/books/musicians by matching
their names with the tail of triples (head, film.film.name, tail), (head,
book.book.title, tail), or (head, type.object.name, tail), respectively,
for the three datasets. Items with multiple matched or no matched
entities are excluded for simplicity. After obtaining the set of item
IDs, we match these item IDs with the head of all triples in Satori
sub-KG, and select all well-matched triples as the final KG for each
dataset.

Dianping-Food dataset is collected from Dianping.com, a Chi-
nese group buying website hosting consumer reviews of restaurants
similar to Yelp. We select approximately 10 million interactions be-
tween users and restaurants in Dianping.com from May 1, 2015
to December 12, 2018. The types of positive interactions include
clicking, buying, and adding to favorites, and we sample negative in-
teractions for each user. The KG for Dianping-Food is collected from
Meituan Brain, an internal knowledge graph built for dining and
entertainment by Meituan-Dianping Group. The types of entities
include POI (restaurant), city, first-level and second-level category,
star, business area, dish, and tag; The types of relations correspond
to the types of entities (e.g., “organization.POI.has_dish”).

Movie Book Music Restaurant
S 16 8 8 4
d 32 64 16 8
L 1 2 1 2
λ 1.0 0.5 0.1 0.5
γ 10−7 2 × 10−5 10−4 10−7
η 2 × 10−2 2 × 10−4 5 × 10−4 2 × 10−2

Table 8: Hyper-parameter settings for the four datasets (S :
number of sampled neighbors for each entity; d: dimension
of hidden layers, L: number of layers, λ: label smoothness
regularizerweight,γ : L2 regularizerweight,η: learning rate).

B Additional Details on Hyper-parameter
Searching
In KGNN-LS, we set functions д and f as inner product, σ as ReLU
for non-last-layers and tanh for the last-layer. Note that the number
of neighbors of an entity in a KG may be significantly different
from each other. Therefore, we uniformly sample a fixed-size set
of neighbors for each entity instead of using all of its neighbors
to keep the computation more efficient. The number of sampled
neighbors for each entity is denoted by S . Hyper-parameter settings
for the four datasets are given in Table 8, which are determined
by optimizing R@10 on a validation set. The search spaces for
hyper-parameters are as follows:

• S = {2, 4, 8, 16, 32};
• d = {4, 8, 16, 32, 64, 128};
• L = {1, 2, 3, 4};
• λ = {0, 0.01, 0.1, 0.5, 1, 5};
• γ = {10−9, 10−8, 10−7, 2 × 10−7, 5 × 10−7, 10−6, 2 × 10−6, 5 ×
10−6, 10−5, 2 × 10−5, 5 × 10−5, 10−4, 2 × 10−4, 5 × 10−4, 10−3};

• η = {10−5, 2× 10−5, 5× 10−5, 10−4, 2× 10−4, 5× 10−4, 10−3, 2×
10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2, 10−1}.

For each dataset, the ratio of training, validation, and test set is
6 : 2 : 2. Each experiment is repeated 5 times, and the average
performance is reported. All trainable parameters are optimized by
Adam algorithm.
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ABSTRACT
Collaborative filtering often suffers from sparsity and cold start
problems in real recommendation scenarios, therefore, researchers
and engineers usually use side information to address the issues
and improve the performance of recommender systems. In this
paper, we consider knowledge graphs as the source of side infor-
mation. We propose MKR, a Multi-task feature learning approach
for Knowledge graph enhanced Recommendation. MKR is a deep
end-to-end framework that utilizes knowledge graph embedding
task to assist recommendation task. The two tasks are associated
by cross&compress units, which automatically share latent fea-
tures and learn high-order interactions between items in recom-
mender systems and entities in the knowledge graph. We prove
that cross&compress units have sufficient capability of polynomial
approximation, and show that MKR is a generalized framework
over several representative methods of recommender systems and
multi-task learning. Through extensive experiments on real-world
datasets, we demonstrate that MKR achieves substantial gains in
movie, book, music, and news recommendation, over state-of-the-
art baselines. MKR is also shown to be able to maintain a decent
performance even if user-item interactions are sparse.

KEYWORDS
Recommender systems; knowledge graph; multi-task learning
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1 INTRODUCTION
Recommender systems (RS) aims to address the information explo-
sion and meet users personalized interests. One of the most popu-
lar recommendation techniques is collaborative filtering (CF) [11],
which utilizes users’ historical interactions and makes recommen-
dations based on their common preferences. However, CF-based
methods usually suffer from the sparsity of user-item interactions
and the cold start problem. Therefore, researchers propose using
∗M.Guo is the corresponding author. This workwas partially sponsored by the National
Basic Research 973 Program of China under Grant 2015CB352403.

WWW 2019, May 13–17, 2019, San Francisco, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

side information in recommender systems, including social net-
works [10], attributes [30], and multimedia (e.g., texts [29], images
[40]). Knowledge graphs (KGs) are one type of side information
for RS, which usually contain fruitful facts and connections about
items. Recently, researchers have proposed several academic and
commercial KGs, such as NELL1, DBpedia2, Google Knowledge
Graph3 and Microsoft Satori4. Due to its high dimensionality and
heterogeneity, a KG is usually pre-processed by knowledge graph
embedding (KGE) methods [27], which embeds entities and relations
into low-dimensional vector spaces while preserving its inherent
structure.

Existing KG-aware methods
Inspired by the success of applying KG in a wide variety of tasks,

researchers have recently tried to utilize KG to improve the perfor-
mance of recommender systems [31, 32, 39, 40, 45]. Personalized
Entity Recommendation (PER) [39] and Factorization Machine with
Group lasso (FMG) [45] treat KG as a heterogeneous information
network, and extract meta-path/meta-graph based latent features to
represent the connectivity between users and items along different
types of relation paths/graphs. It should be noted that PER and
FMG rely heavily on manually designed meta-paths/meta-graphs,
which limits its application in generic recommendation scenar-
ios. Deep Knowledge-aware Network (DKN) [32] designs a CNN
framework to combine entity embeddings with word embeddings
for news recommendation. However, the entity embeddings are
required in advance of using DKN, causing DKN to lack an end-
to-end way of training. Another concern about DKN is that it can
hardly incorporate side information other than texts. RippleNet
[31] is a memory-network-like model that propagates users’ poten-
tial preferences in the KG and explores their hierarchical interests.
But the importance of relations is weakly characterized in Rip-
pleNet, because the embedding matrix of a relation R can hardly
be trained to capture the sense of importance in the quadratic form
v⊤Rh (v and h are embedding vectors of two entities). Collabo-
rative Knowledge base Embedding (CKE) [40] combines CF with
structural knowledge, textual knowledge, and visual knowledge
in a unified framework. However, the KGE module in CKE (i.e.,
TransR [13]) is more suitable for in-graph applications (such as KG
completion and link prediction) rather than recommendation. In
addition, the CF module and the KGE module are loosely coupled

1http://rtw.ml.cmu.edu/rtw/
2http://wiki.dbpedia.org/
3https://developers.google.com/knowledge-graph/
4https://searchengineland.com/library/bing/bing-satori
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in CKE under a Bayesian framework, making the supervision from
KG less obvious for recommender systems.

The proposed approach
To address the limitations of previous work, we propose MKR, a

multi-task learning (MTL) approach for knowledge graph enhanced
recommendation. MKR is a generic, end-to-end deep recommenda-
tion framework, which aims to utilize KGE task to assist recommen-
dation task5. Note that the two tasks are not mutually independent,
but are highly correlated since an item in RS may associate with one
or more entities in KG. Therefore, an item and its corresponding
entity are likely to have a similar proximity structure in RS and
KG, and share similar features in low-level and non-task-specific
latent feature spaces [15]. We will further validate the similarity
in the experiments section. To model the shared features between
items and entities, we design a cross&compress unit in MKR. The
cross&compress unit explicitly models high-order interactions be-
tween item and entity features, and automatically control the cross
knowledge transfer for both tasks. Through cross&compress units,
representations of items and entities can complement each other,
assisting both tasks in avoiding fitting noises and improving gen-
eralization. The whole framework can be trained by alternately
optimizing the two tasks with different frequencies, which endows
MKR with high flexibility and adaptability in real recommendation
scenarios.

We probe the expressive capability of MKR and show, through
theoretical analysis, that the cross&compress unit is capable of
approximating sufficiently high order feature interactions between
items and entities. We also show that MKR is a generalized frame-
work over several representative methods of recommender systems
and multi-task learning, including factorization machines [22, 23],
deep&cross network [34], and cross-stitch network [18]. Empiri-
cally, we evaluate our method in four recommendation scenarios,
i.e., movie, book, music, and news recommendations. The results
demonstrate that MKR achieves substantial gains over state-of-the-
art baselines in both click-through rate (CTR) prediction (e.g., 11.6%
AUC improvements on average for movies) and top-K recommen-
dation (e.g., 66.4% Recall@10 improvements on average for books).
MKR can also maintain a decent performance in sparse scenarios.

Contribution
It is worth noticing that the problem studied in this paper can

also be modelled as cross-domain recommendation [26] or transfer
learning [21], since we care more about the performance of rec-
ommendation task. However, the key observation is that though
cross-domain recommendation and transfer learning have single
objective for the target domain, their loss functions still contain
constraint terms for measuring data distribution in the source do-
main or similarity between two domains. In our proposed MKR, the
KGE task serves as the constraint term explicitly to provide regular-
ization for recommender systems. We would like to emphasize that
the major contribution of this paper is exactly modeling the prob-
lem as multi-task learning: We go a step further than cross-domain
recommendation and transfer learning by finding that the inter-
task similarity is helpful to not only recommender systems but also

5KGE task can also benefit from recommendation task empirically as shown in the
experiments section.

knowledge graph embedding, as shown in theoretical analysis and
experiment results.

2 OUR APPROACH
In this section, we first formulate the knowledge graph enhanced
recommendation problem, then introduce the framework of MKR
and present the design of the cross&compress unit, recommen-
dation module and KGE module in detail. We lastly discuss the
learning algorithm for MKR.

2.1 Problem Formulation
We formulate the knowledge graph enhanced recommendation
problem in this paper as follows. In a typical recommendation
scenario, we have a set of M users U = {u1,u2, ...,uM } and a set
of N itemsV = {v1,v2, ...,vN }. The user-item interaction matrix
Y ∈ RM×N is defined according to users’ implicit feedback, where
yuv = 1 indicates that useru engagedwith itemv , such as behaviors
of clicking, watching, browsing, or purchasing; otherwise yuv = 0.
Additionally, we also have access to a knowledge graph G, which is
comprised of entity-relation-entity triples (h, r , t). Here h, r , and t
denote the head, relation, and tail of a knowledge triple, respectively.
For example, the triple (Quentin Tarantino, film.director.film, Pulp
Fiction) states the fact that Quentin Tarantino directs the film Pulp
Fiction. In many recommendation scenarios, an item v ∈ V may
associate with one or more entities in G. For example, in movie
recommendation, the item "Pulp Fiction" is linkedwith its namesake
in a KG, while in news recommendation, news with the title "Trump
pledges aid to Silicon Valley during tech meeting" is linked with
entities "Donald Trump" and "Silicon Valley" in a KG.

Given the user-item interaction matrix Y as well as the knowl-
edge graph G, we aim to predict whether user u has potential
interest in item v with which he has had no interaction before. Our
goal is to learn a prediction function ŷuv = F (u,v |Θ,Y,G), where
ŷuv denotes the probability that user u will engage with item v ,
and Θ is the model parameters of function F .

2.2 Framework
The framework of MKR is illustrated in Figure 1a. MKR consists
of three main components: recommendation module, KGE module,
and cross&compress units. (1) The recommendation module on
the left takes a user and an item as input, and uses a multi-layer
perceptron (MLP) and cross&compress units to extract short and
dense features for the user and the item, respectively. The extracted
features are then fed into another MLP together to output the pre-
dicted probability. (2) Similar to the left part, the KGE module in the
right part also uses multiple layers to extract features from the head
and relation of a knowledge triple, and outputs the representation
of the predicted tail under the supervision of a score function f and
the real tail. (3) The recommendation module and the KGE module
are bridged by specially designed cross&compress units. The pro-
posed unit can automatically learn high-order feature interactions
of items in recommender systems and entities in the KG.

2.3 Cross&compress Unit
To model feature interactions between items and entities, we design
a cross&compress unit in MKR framework. As shown in Figure 1b,
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Figure 1: (a) The framework of MKR. The left and right part illustrate the recommendation module and the KGE module,
respectively, which are bridged by the cross&compress units. (b) Illustration of a cross&compress unit. The cross&compress
unit generates a cross feature matrix from item and entity vectors by cross operation, and outputs their vectors for the next
layer by compress operation.

for itemv and one of its associated entities e , we first construct d×d
pairwise interactions of their latent feature vl ∈ Rd and el ∈ Rd
from layer l :

Cl = vl e
⊤
l =



v
(1)
l e

(1)
l · · · v

(1)
l e

(d )
l

· · · · · ·
v
(d )
l e

(1)
l · · · v

(d )
l e

(d )
l


, (1)

where Cl ∈ Rd×d is the cross feature matrix of layer l , and d is
the dimension of hidden layers. This is called the cross operation,
since each possible feature interaction v(i)l e

(j)
l ,∀(i, j) ∈ {1, ...,d}2

between item v and its associated entity e is modeled explicitly
in the cross feature matrix. We then output the feature vectors of
items and entities for the next layer by projecting the cross feature
matrix into their latent representation spaces:

vl+1 =Clw
VV
l + C⊤

l w
EV
l + bVl = vl e

⊤
l w

VV
l + elv

⊤
l w

EV
l + bVl ,

el+1 =Clw
V E
l + C⊤

l w
EE
l + bEl = vl e

⊤
l w

V E
l + elv

⊤
l w

EE
l + bEl ,

(2)

where w· ·
l ∈ Rd and b·l ∈ Rd are trainable weight and bias vec-

tors. This is called the compress operation, since the weight vec-
tors project the cross feature matrix from Rd×d space back to the
feature spaces Rd . Note that in Eq. (2), the cross feature matrix
is compressed along both horizontal and vertical directions (by
operating on Cl and C⊤

l ) for the sake of symmetry, but we will
provide more insights of the design in Section 3.2. For simplicity,
the cross&compress unit is denoted as:

[vl+1, el+1] = C(vl , el ), (3)

and we use a suffix [v] or [e] to distinguish its two outputs in the
following of this paper. Through cross&compress units, MKR can
adaptively adjust the weights of knowledge transfer and learn the
relevance between the two tasks.

It should be noted that cross&compress units should only exist
in low-level layers of MKR, as shown in Figure 1a. This is because:

(1) In deep architectures, features usually transform from general
to specific along the network, and feature transferability drops
significantly in higher layers with increasing task dissimilarity
[38]. Therefore, sharing high-level layers risks to possible negative
transfer, especially for the heterogeneous tasks in MKR. (2) In high-
level layers of MKR, item features are mixed with user features, and
entity features are mixed with relation features. The mixed features
are not suitable for sharing since they have no explicit association.

2.4 Recommendation Module
The input of the recommendation module in MKR consists of two
raw feature vectors u and v that describe user u and item v , respec-
tively. u and v can be customized as one-hot ID [8], attributes [30],
bag-of-words [29], or their combinations, based on the application
scenario. Given user u’s raw feature vector u, we use an L-layer
MLP to extract his latent condensed feature6:

uL =M(M(· · ·M(u))) =ML(u), (4)

whereM(x) = σ (Wx+b) is a fully-connected neural network layer7
with weightW, bias b, and nonlinear activation function σ (·). For
item v , we use L cross&compress units to extract its feature:

vL = Ee∼S(v)

CL(v, e)[v]


, (5)

where S(v) is the set of associated entities of item v .
After having useru’s latent feature uL and itemv’s latent feature

vL , we combine the two pathways by a predicting function fRS ,
for example, inner product or an H -layer MLP. The final predicted
probability of user u engaging item v is:

ŷuv = σ
�
fRS (uL , vL)


. (6)

6We use the exponent notation L in Eq. (4) and following equations in the rest of this
paper for simplicity, but note that the parameters of L layers are actually different.
7Exploring a more elaborate design of layers in the recommendation module is an
important direction of future work.
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2.5 Knowledge Graph Embedding Module
Knowledge graph embedding is to embed entities and relations into
continuous vector spaces while preserving their structure. Recently,
researchers have proposed a great many KGE methods, including
translational distance models [2, 13] and semantic matching models
[14, 19]. In MKR, we propose a deep semantic matching architecture
for KGEmodule. Similar to the recommendation module, for a given
knowledge triple (h, r , t), we first utilize multiple cross&compress
units and nonlinear layers to process the raw feature vectors of head
h and relation r (including ID [13], types [36], textual description
[35], etc.), respectively. Their latent features are then concatenated
together, followed by a K-layer MLP for predicting tail t :

hL = Ev∼S(h)
[
CL(v, h)[e]

]
,

rL =ML(r),

t̂ =MK
( [
hL
rL

] )
,

(7)

where S(h) is the set of associated items of entity h, and t̂ is the
predicted vector of tail t . Finally, the score of the triple (h, r , t) is
calculated using a score (similarity) function fKG :

score(h, r , t) = fKG (t, t̂), (8)

where t is the real feature vector of t . In this paper, we use the
normalized inner product fKG (t, t̂) = σ (t⊤ t̂) as the choice of score
function [18], but other forms of (dis)similarity metrics can also be
applied here such as KullbackâĂŞLeibler divergence.

2.6 Learning Algorithm
The complete loss function of MKR is as follows:

L =LRS + LKG + LREG

=
∑

u ∈U,v ∈V
J(ŷuv ,yuv )

− λ1
( ∑

(h,r,t )∈G
score(h, r , t) −

∑

(h′,r,t ′)�G
score(h′, r , t ′)

)

+ λ2∥W∥22 .

(9)

In Eq. (9), the first term measures loss in the recommendation
module, where u and v traverse the set of users and the items,
respectively, and J is the cross-entropy function. The second term
calculates the loss in the KGE module, in which we aim to increase
the score for all true triples while reducing the score for all false
triples. The last item is the regularization term for preventing over-
fitting, λ1 and λ2 are the balancing parameters.8

Note that the loss function in Eq. (9) traverses all possible user-
item pairs and knowledge triples. To make computation more effi-
cient, following [17], we use a negative sampling strategy during
training. The learning algorithm of MKR is presented in Algorithm
1, in which a training epoch consists of two stages: recommenda-
tion task (line 3-7) and KGE task (line 8-10). In each iteration, we
repeat training on recommendation task for t times (t is a hyper-
parameter and normally t > 1) before training on KGE task once in

8λ1 can be seen as the ratio of two learning rates for the two tasks.

Algorithm 1Multi-Task Training for MKR

Input: Interaction matrix Y, knowledge graph G
Output: Prediction function F (u,v |Θ,Y,G)
1: Initialize all parameters
2: for number of training iteration do

// recommendation task
3: for t steps do
4: Sample minibatch of positive and negative interactions

from Y;
5: Sample e ∼ S(v) for each item v in the minibatch;
6: Update parameters of F by gradient descent on Eq. (1)-(6),

(9);
7: end for

// knowledge graph embedding task
8: Sample minibatch of true and false triples from G;
9: Sample v ∼ S(h) for each head h in the minibatch;
10: Update parameters of F by gradient descent on Eq. (1)-(3),

(7)-(9);
11: end for

each epoch, since we are more focused on improving recommenda-
tion performance. We will discuss the choice of t in the experiments
section.

3 THEORETICAL ANALYSIS
In this section, we prove that cross&compress units have sufficient
capability of polynomial approximation. We also show that MKR is
a generalized framework over several representative methods of
recommender systems and multi-task learning.

3.1 Polynomial Approximation
According to the Weierstrass approximation theorem [25], any
function under certain smoothness assumption can be approxi-
mated by a polynomial to an arbitrary accuracy. Therefore, we
examine the ability of high-order interaction approximation of
the cross&compress unit. We show that cross&compress units can
model the order of item-entity feature interaction up to exponential
degree:

Theorem 1. Denote the input of item and entity in MKR network
as v = [v1 · · · vd ]⊤ and e = [e1 · · · ed ]⊤, respectively. Then the
cross terms about v and e in ∥vL ∥1 and ∥eL ∥1 (the L1-norm of vL
and eL) with maximal degree is kα ,βv

α1
1 · · ·vαdd e

β1
1 · · · eβdd , where

kα ,β ∈ R, αi , βi ∈ N for i ∈ {1, · · · ,d}, α1 + · · · + αd = 2L−1, and
β1 + · · · + βd = 2L−1 (L ≥ 1, v0 = v, e0 = e).

In recommender systems,
∏d

i=1v
αi
i e

βi
i is also called combina-

torial feature, as it measures the interactions of multiple original
features. Theorem 1 states that cross&compress units can automat-
ically model the combinatorial features of items and entities for
sufficiently high order, which demonstrates the superior approxi-
mation capacity of MKR as compared with existing work such as
Wide&Deep [3], factorization machines [22, 23] and DCN [34]. The
proof of Theorem 1 is provided in the Appendix. Note that The-
orem 1 gives a theoretical view of the polynomial approximation
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ability of the cross&compress unit rather than providing guaran-
tees on its actual performance. We will empirically evaluate the
cross&compress unit in the experiments section.

3.2 Unified View of Representative Methods
In the following we provide a unified view of several representa-
tive models in recommender systems and multi-task learning, by
showing that they are restricted versions of or theoretically related
to MKR. This justifies the design of cross&compress unit and con-
ceptually explains its strong empirical performance as compared to
baselines.

3.2.1 Factorization machines. Factorization machines [22, 23]
are a generic method for recommender systems. Given an input
feature vector, FMs model all interactions between variables in the
input vector using factorized parameters, thus being able to estimate
interactions in problems with huge sparsity such as recommender
systems. The model equation for a 2-degree factorization machine
is defined as

ŷ(x) = w0 +
d

i=1
wixi +

d

i=1

d

j=i+1
⟨vi , vj ⟩xix j , (10)

where xi is the i-th unit of input vector x, w · is weight scalar,
v· is weight vector, and ⟨·, ·⟩ is dot product of two vectors. We
show that the essence of FM is conceptually similar to an 1-layer
cross&compress unit:

Proposition 1. The L1-norm of v1 and e1 can be written as the
following form:

∥v1∥1 (or ∥e1∥1) =
b +

d

i=1

d

j=1
⟨wi ,w j ⟩viej

 , (11)

where ⟨wi ,w j ⟩ = wi +w j is the sum of two scalars.

It is interesting to notice that, instead of factorizing the weight
parameter of xix j into the dot product of two vectors as in FM,
the weight of term viej is factorized into the sum of two scalars
in cross&compress unit to reduce the number of parameters and
increase robustness of the model.

3.2.2 Deep&Cross Network. DCN [34] learns explicit and high-
order cross features by introducing the layers:

xl+1 = x0x⊤l wl + xl + bl , (12)

where xl , wl , and bl are representation, weight, and bias of the
l-th layer. We demonstrate the link between DCN and MKR by the
following proposition:

Proposition 2. In the formula of vl+1 in Eq. (2), if we restrict
wVV
l in the first term to satisfy e⊤l w

VV
l = 1 and restrict el in the

second term to be e0 (and impose similar restrictions on el+1), the
cross&compress unit is then conceptually equivalent to DCN layer in
the sense of multi-task learning:

vl+1 = e0v⊤l w
EV
l + vl + b

V
l ,

el+1 = v0e⊤l w
V E
l + el + b

E
l .

(13)

It can be proven that the polynomial approximation ability of
the above DCN-equivalent version (i.e., the maximal degree of
cross terms in vl and el ) is O(l), which is weaker than original
cross&compress units with O(2l ) approximation ability.

3.2.3 Cross-stitch Networks. Cross-stitch networks [18] is a
multi-task learning model in convolutional networks, in which
the designed cross-stitch unit can learn a combination of shared
and task-specific representations between two tasks. Specifically,
given two activation maps xA and xB from layer l for both the tasks,
cross-stitch networks learn linear combinations x̃A and x̃B of both
the input activations and feed these combinations as input to the
next layers’ filters. The formula at location (i, j) in the activation
map is



x̃
i j
A

x̃
i j
B


=


αAA αAB
αBA αBB

 

x
i j
A

x
i j
B


, (14)

where α ’s are trainable transfer weights of representations between
task A and task B. We show that the cross-stitch unit in Eq. (14) is
a simplified version of our cross&compress unit by the following
proposition:

Proposition 3. If we omit all biases in Eq. (2), the cross&compress
unit can be written as


vl+1
el+1


=


e⊤l w

VV
l v⊤l w

EV
l

e⊤l w
V E
l v⊤l w

EE
l

 
vl
el


. (15)

The transfer matrix in Eq. (15) serves as the cross-stitch unit
[αAA αAB ; αBA αBB ] in Eq. (14). Like cross-stitch networks, MKR
network can decide to make certain layers task specific by setting
v⊤l w

EV
l (αAB ) or e⊤l w

V E
l (αBA) to zero, or choose a more shared

representation by assigning a higher value to them. But the transfer
matrix is more fine-grained in cross&compress unit, because the
transfer weights are replaced from scalars to dot products of two
vectors. It is rather interesting to notice that Eq. (15) can also be
regarded as an attention mechanism [1], as the computation of
transfer weights involves the feature vectors vl and el themselves.

4 EXPERIMENTS
In this section, we evaluate the performance of MKR in four real-
world recommendation scenarios: movie, book, music, and news9.

4.1 Datasets
We utilize the following four datasets in our experiments:

• MovieLens-1M10 is a widely used benchmark dataset in
movie recommendations, which consists of approximately 1
million explicit ratings (ranging from 1 to 5) on the Movie-
Lens website.

• Book-Crossing11 dataset contains 1,149,780 explicit ratings
(ranging from 0 to 10) of books in the Book-Crossing com-
munity.

• Last.FM12 dataset contains musician listening information
from a set of 2 thousand users from Last.fm online music
system.

• Bing-News dataset contains 1,025,192 pieces of implicit
feedback collected from the server logs of Bing News13 from

9The source code is available at https://github.com/hwwang55/MKR.
10https://grouplens.org/datasets/movielens/1m/
11http://www2.informatik.uni-freiburg.de/~cziegler/BX/
12https://grouplens.org/datasets/hetrec-2011/
13https://www.bing.com/news
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Table 1: Basic statistics and hyper-parameter settings for the four datasets.

Dataset # users # items # interactions # KG triples Hyper-parameters
MovieLens-1M 6,036 2,347 753,772 20,195 L = 1, d = 8, t = 3, λ1 = 0.5
Book-Crossing 17,860 14,910 139,746 19,793 L = 1, d = 8, t = 2, λ1 = 0.1

Last.FM 1,872 3,846 42,346 15,518 L = 2, d = 4, t = 2, λ1 = 0.1
Bing-News 141,487 535,145 1,025,192 1,545,217 L = 3, d = 16, t = 5, λ1 = 0.2

October 16, 2016 to August 11, 2017. Each piece of news has
a title and a snippet.

Since MovieLens-1M, Book-Crossing, and Last.FM are explicit
feedback data (Last.FM provides the listening count as weight for
each user-item interaction), we transform them into implicit feed-
back where each entry is marked with 1 indicating that the user has
rated the item positively, and sample an unwatched set marked as
0 for each user. The threshold of positive rating is 4 for MovieLens-
1M, while no threshold is set for Book-Crossing and Last.FM due
to their sparsity.

We use Microsoft Satori to construct the KG for each dataset. We
first select a subset of triples from the whole KG with a confidence
level greater than 0.9. For MovieLens-1M and Book-Crossing, we
additionally select a subset of triples from the sub-KG whose rela-
tion name contains "film" or "book" respectively to further reduce
KG size.

Given the sub-KGs, forMovieLens-1M, Book-Crossing, and Last.FM,
we collect IDs of all valid movies, books, or musicians by matching
their names with tail of triples (head, film.film.name, tail), (head,
book.book.title, tail), or (head, type.object.name, tail), respectively.
For simplicity, items with no matched or multiple matched entities
are excluded. We then match the IDs with the head and tail of all
KG triples and select all well-matched triples from the sub-KG. The
constructing process is similar for Bing-News except that: (1) we
use entity linking tools to extract entities in news titles; (2) we do
not impose restrictions on the names of relations since the entities
in news titles are not within one particular domain. The basic sta-
tistics of the four datasets are presented in Table 1. Note that the
number of users, items, and interactions are smaller than original
datasets since we filtered out items with no corresponding entity
in the KG.

4.2 Baselines
We compare our proposedMKRwith the following baselines. Unless
otherwise specified, the hyper-parameter settings of baselines are
the same as reported in their original papers or as default in their
codes.

• PER [39] treats the KG as heterogeneous information net-
works and extracts meta-path based features to represent
the connectivity between users and items. In this paper,
we use manually designed user-item-attribute-item paths
as features, i.e., "user-movie-director-movie", "user-movie-
genre-movie", and "user-movie-star-movie" for MovieLens-
20M; "user-book-author-book" and "user-book-genre-book"
for Book-Crossing; "user-musician-genre-musician", "user-
musician-country-musician", and "user-musician-age-musician"
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Figure 2: The correlation between the number of common
neighbors of an item pair in KG and their number of com-
mon raters in RS.

(age is discretized) for Last.FM. Note that PER cannot be ap-
plied to news recommendation because it’s hard to pre-define
meta-paths for entities in news.

• CKE [40] combines CF with structural, textual, and visual
knowledge in a unified framework for recommendation. We
implement CKE as CF plus structural knowledge module in
this paper. The dimension of user and item embeddings for
the four datasets are set as 64, 128, 32, 64, respectively. The
dimension of entity embeddings is 32.

• DKN [32] treats entity embedding and word embedding as
multiple channels and combines them together in CNN for
CTR prediction. In this paper, we use movie/book names and
news titles as textual input for DKN. The dimension of word
embedding and entity embedding is 64, and the number of
filters is 128 for each window size 1, 2, 3.

• RippleNet [31] is a memory-network-like approach that
propagates usersâĂŹ preferences on the knowledge graph
for recommendation. The hyper-parameter settings for Last.FM
are d = 8, H = 2, λ1 = 10−6, λ2 = 0.01, η = 0.02.

• LibFM [23] is a widely used feature-based factorization
model. We concatenate the raw features of users and items
as well as the corresponding averaged entity embeddings
learned from TransR [13] as input for LibFM. The dimen-
sion is {1, 1, 8} and the number of training epochs is 50. The
dimension of TransR is 32.

• Wide&Deep [3] is a deep recommendation model combin-
ing a (wide) linear channel with a (deep) nonlinear channel.
The input for Wide&Deep is the same as in LibFM. The di-
mension of user, item, and entity is 64, andwe use a two-layer
deep channel with dimension of 100 and 50 as well as a wide
channel.
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Table 2: The results of AUC and Accuracy in CTR prediction.

Model MovieLens-1M Book-Crossing Last.FM Bing-News
AUC ACC AUC ACC AUC ACC AUC ACC

PER 0.710 (-22.6%) 0.664 (-21.2%) 0.623 (-15.1%) 0.588 (-16.7%) 0.633 (-20.6%) 0.596 (-20.7%) - -
CKE 0.801 (-12.6%) 0.742 (-12.0%) 0.671 (-8.6%) 0.633 (-10.3%) 0.744 (-6.6%) 0.673 (-10.5%) 0.553 (-19.7%) 0.516 (-20.0%)
DKN 0.655 (-28.6%) 0.589 (-30.1%) 0.622 (-15.3%) 0.598 (-15.3%) 0.602 (-24.5%) 0.581 (-22.7%) 0.667 (-3.2%) 0.610 (-5.4%)

RippleNet 0.920 (+0.3%) 0.842 (-0.1%) 0.729 (-0.7%) 0.662 (-6.2%) 0.768 (-3.6%) 0.691 (-8.1%) 0.678 (-1.6%) 0.630 (-2.3%)
LibFM 0.892 (-2.7%) 0.812 (-3.7%) 0.685 (-6.7%) 0.640 (-9.3%) 0.777 (-2.5%) 0.709 (-5.7%) 0.640 (-7.1%) 0.591 (-8.4%)

Wide&Deep 0.898 (-2.1%) 0.820 (-2.7%) 0.712 (-3.0%) 0.624 (-11.6%) 0.756 (-5.1%) 0.688 (-8.5%) 0.651 (-5.5%) 0.597 (-7.4%)
MKR 0.917 0.843 0.734 0.704 0.797 0.752 0.689 0.645

MKR-1L - - - - 0.795 (-0.3%) 0.749 (-0.4%) 0.680 (-1.3%) 0.631 (-2.2%)
MKR-DCN 0.883 (-3.7%) 0.802 (-4.9%) 0.705 (-4.3%) 0.676 (-4.2%) 0.778 (-2.4%) 0.730 (-2.9%) 0.671 (-2.6%) 0.614 (-4.8%)
MKR-stitch 0.905 (-1.3%) 0.830 (-1.5%) 0.721 (-2.2%) 0.682 (-3.4%) 0.772 (-3.1%) 0.725 (-3.6%) 0.674 (-2.2%) 0.621 (-3.7%)

4.3 Experiments setup
In MKR, we set the number of high-level layers K = 1, fRS as inner
product, and λ2 = 10−6 for all three datasets, and other hyper-
parameter are given in Table 1. The settings of hyper-parameters
are determined by optimizing AUC on a validation set. For each
dataset, the ratio of training, validation, and test set is 6 : 2 : 2. Each
experiment is repeated 3 times, and the average performance is
reported. We evaluate our method in two experiment scenarios: (1)
In click-through rate (CTR) prediction, we apply the trained model
to each piece of interactions in the test set and output the predicted
click probability. We use AUC and Accuracy to evaluate the per-
formance of CTR prediction. (2) In top-K recommendation, we use
the trained model to select K items with highest predicted click
probability for each user in the test set, and choose Precision@K
and Recall@K to evaluate the recommended sets.

4.4 Empirical study
We conduct an empirical study to investigate the correlation of
items in RS and their corresponding entities in KG. Specifically, we
aim to reveal how the number of common neighbors of an item
pair in KG changes with their number of common raters in RS.
To this end, we first randomly sample 1 million item pairs from
MovieLens-1M.We then classify each pair into 5 categories based on
the number of their common raters in RS, and count their average
number of common neighbors in KG for each category. The result
is presented in Figure 2a, which clearly shows that if two items have
more common raters in RS, they are likely to share more common
neighbors in KG. Figure 2b shows the positive correlation from an
opposite direction. The above findings empirically demonstrate that
items share the similar structure of proximity in KG and RS, thus the
cross knowledge transfer of items benefits both recommendation
and KGE tasks in MKR.

4.5 Results
4.5.1 Comparison with baselines. The results of all methods in

CTR prediction and top-K recommendation are presented in Table
2 and Figure 3, 4, respectively. We have the following observations:

• PER performs poor on movie, book, and music recommen-
dation because the user-defined meta-paths can hardly be

optimal in reality. Moreover, PER cannot be applied to news
recommendation.

• CKE performs better in movie, book, andmusic recommenda-
tion than news. This may be because MovieLens-1M, Book-
Crossing, and Last.FM are much denser than Bing-News,
which is more favorable for the collaborative filtering part
in CKE.

• DKN performs best in news recommendation compared with
other baselines, but performs worst in other scenarios. This
is because movie, book, and musician names are too short
and ambiguous to provide useful information.

• RippleNet performs best among all baselines, and even out-
performs MKR on MovieLens-1M. This demonstrates that
RippleNet can precisely capture user interests, especially
in the case where user-item interactions are dense. How-
ever, RippleNet is more sensitive to the density of datasets,
as it performs worse than MKR in Book-Crossing, Last.FM,
and Bing-News. We will further study their performance in
sparse scenarios in Section 4.5.3.

• In general, our MKR performs best among all methods on the
four datasets. Specifically, MKR achieves average Accuracy
gains of 11.6%, 11.5%, 12.7%, and 8.7% in movie, book, mu-
sic, and news recommendation, respectively, which demon-
strates the efficacy of the multi-task learning framework in
MKR. Note that the top-K metrics are much lower for Bing-
News because the number of news is significantly larger
than movies, books, and musicians.

4.5.2 Comparison with MKR variants. We further compare MKR
with its three variants to demonstrate the efficacy of cross&compress
unit:

• MKR-1L is MKR with one layer of cross&compress unit,
which corresponds to FM model according to Proposition 1.
Note that MKR-1L is actually MKR in the experiments for
MovieLens-1M.

• MKR-DCN is a variant of MKR based on Eq. (13), which
corresponds to DCN model.

• MKR-stitch is another variant of MKR corresponding to the
cross-stitch network, in which the transfer weights in Eq.
(15) are replaced by four trainable scalars.
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Figure 3: The results of Precision@K in top-K recommendation.
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Figure 4: The results of Recall@K in top-K recommendation.

Table 3: Results of AUC on MovieLens-1M in CTR prediction with different ratios of training set r .

Model r
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PER 0.598 0.607 0.621 0.638 0.647 0.662 0.675 0.688 0.697 0.710
CKE 0.674 0.692 0.705 0.716 0.739 0.754 0.768 0.775 0.797 0.801
DKN 0.579 0.582 0.589 0.601 0.612 0.620 0.631 0.638 0.646 0.655

RippleNet 0.843 0.851 0.859 0.862 0.870 0.878 0.890 0.901 0.912 0.920
LibFM 0.801 0.810 0.816 0.829 0.837 0.850 0.864 0.875 0.886 0.892

Wide&Deep 0.788 0.802 0.809 0.815 0.821 0.840 0.858 0.876 0.884 0.898
MKR 0.868 0.874 0.881 0.882 0.889 0.897 0.903 0.908 0.913 0.917

From Table 2 we observe that MKR outperforms MKR-1L and
MKR-DCN, which shows that modeling high-order interactions
between item and entity features is helpful for maintaining decent
performance. MKR also achieves better scores than MKR-stitch.
This validates the efficacy of fine-grained control on knowledge
transfer in MKR compared with the simple cross-stitch units.

4.5.3 Results in sparse scenarios. Onemajor goal of using knowl-
edge graph in MKR is to alleviate the sparsity and the cold start
problem of recommender systems. To investigate the efficacy of

the KGE module in sparse scenarios, we vary the ratio of train-
ing set of MovieLens-1M from 100% to 10% (while the validation
and test set are kept fixed), and report the results of AUC in CTR
prediction for all methods. The results are shown in Table 3. We
observe that the performance of all methods deteriorates with the
reduce of the training set. When r = 10%, the AUC score decreases
by 15.8%, 15.9%, 11.6%, 8.4%, 10.2%, 12.2% for PER, CKE, DKN,
RippleNet, LibFM, and Wide&Deep, respectively, compared with
the case when full training set is used (r = 100%). In contrast, the
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Figure 5: Parameter sensitivity of MKR on Bing-News w.r.t. (a) the size of the knowledge graph; (b) training frequency of the
RS module t ; and (c) dimension of embeddings d .

Table 4: The results of RMSE on the KGE module for the
three datasets. "KGE" means only KGE module is trained,
while "KGE + RS" means KGE module and RS module are
trained together.

dataset KGE KGE + RS
MovieLens-1M 0.319 0.302
Book-Crossing 0.596 0.558

Last.FM 0.480 0.471
Bing-News 0.488 0.459

AUC score of MKR only decreases by 5.3%, which demonstrates
that MKR can still maintain a decent performance even when the
user-item interaction is sparse. We also notice that MKR performs
better than RippleNet in sparse scenarios, which is accordance with
our observation in Section 4.5.1 that RippleNet is more sensitive to
the density of user-item interactions.

4.5.4 Results on KGE side. Although the goal of MKR is to utilize
KG to assist with recommendation, it is still interesting to investi-
gate whether the RS task benefits the KGE task, since the principle
of multi-task learning is to leverage shared information to help
improve the performance of all tasks [42]. We present the result
of RMSE (rooted mean square error) between predicted and real
vectors of tails in the KGE task in Table 4. Fortunately, we find that
the existence of RS module can indeed reduce the prediction error
by 1.9% ∼ 6.4%. The results show that the cross&compress units
are able to learn general and shared features that mutually benefit
both sides of MKR.

4.6 Parameter Sensitivity
4.6.1 Impact of KG size. We vary the size of KG to further inves-

tigate the efficacy of usage of KG. The results ofAUC on Bing-News
are plotted in Figure 5a. Specifically, the AUC and Accuracy is en-
hanced by 13.6% and 11.8%with the KG ratio increasing from 0.1 to
1.0 in three scenarios, respectively. This is because the Bing-News
dataset is extremely sparse, making the effect of KG usage rather
obvious.

4.6.2 Impact of RS training frequency. We investigate the in-
fluence of parameters t in MKR by varying t from 1 to 10, while

keeping other parameters fixed. The results are presented in Fig-
ure 5b. We observe that MKR achieves the best performance when
t = 5. This is because a high training frequency of the KGE module
will mislead the objective function of MKR, while too small of a
training frequency of KGE cannot make full use of the transferred
knowledge from the KG.

4.6.3 Impact of embedding dimension. We also show how the
dimension of users, items, and entities affects the performance
of MKR in Figure 5c. We find that the performance is initially
improved with the increase of dimension, because more bits in
embedding layer can encode more useful information. However,
the performance drops when the dimension further increases, as too
large number of dimensions may introduce noises which mislead
the subsequent prediction.

5 RELATEDWORK
5.1 Knowledge Graph Embedding
The KGE module in MKR connects to a large body of work in KGE
methods. KGE is used to embed entities and relations in a knowl-
edge into low-dimensional vector spaces while still preserving the
structural information [33]. KGE methods can be classified into the
following two categories: (1) Translational distance models exploit
distance-based scoring functions when learning representations of
entities and relations, such as TransE [2], TransH [35], and TransR
[13]; (2) Semantic matching models measure plausibility of knowl-
edge triples by matching latent semantics of entities and relations,
such as RESCAL [20], ANALOGY [19], and HolE [14]. Recently,
researchers also propose incorporating auxiliary information, such
as entity types [36], logic rules [24], and textual descriptions [46] to
assist KGE. The above KGE methods can also be incorporated into
MKR as the implementation of the KGE module, but note that the
cross&compress unit in MKR needs to be redesigned accordingly.
Exploring other designs of KGEmodule as well as the corresponding
bridging unit is also an important direction of future work.

5.2 Multi-Task Learning
Multi-task learning is a learning paradigm in machine learning
and its aim is to leverage useful information contained in multiple
related tasks to help improve the generalization performance of all
the tasks [42]. All of the learning tasks are assumed to be related to
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each other, and it is found that learning these tasks jointly can lead
to performance improvement compared with learning them indi-
vidually. In general, MTL algorithms can be classified into several
categories, including feature learning approach [34, 41], low-rank
approach [7, 16], task clustering approach [47], task relation learn-
ing approach [12], and decomposition approach [6]. For example,
the cross-stitch network [41] determines the inputs of hidden layers
in different tasks by a knowledge transfer matrix; Zhou et. al [47]
aims to cluster tasks by identifying representative tasks which are
a subset of the givenm tasks, i.e., if task Ti is selected by task Tj
as a representative task, then it is expected that model parameters
for Tj are similar to those of Ti . MTL can also be combined with
other learning paradigms to improve the performance of learning
tasks further, including semi-supervised learning, active learning,
unsupervised learning,and reinforcement learning.

Our work can be seen as an asymmetric multi-task learning
framework [37, 43, 44], in which we aim to utilize the connection
between RS and KG to help improve their performance, and the
two tasks are trained with different frequencies.

5.3 Deep Recommender Systems
Recently, deep learning has been revolutionizing recommender sys-
tems and achieves better performance in many recommendation
scenarios. Roughly speaking, deep recommender systems can be
classified into two categories: (1) Using deep neural networks to
process the raw features of users or items [5, 28–30, 40]; For ex-
ample, Collaborative Deep Learning [29] designs autoencoders to
extract short and dense features from textual input and feeds the
features into a collaborative filtering module; DeepFM [5] combines
factorization machines for recommendation and deep learning for
feature learning in a neural network architecture. (2) Using deep
neural networks to model the interaction among users and items
[3, 4, 8, 9]. For example, Neural Collaborative Filtering [8] replaces
the inner product with a neural architecture to model the user-item
interaction. The major difference between these methods and ours
is that MKR deploys a multi-task learning framework that utilizes
the knowledge from a KG to assist recommendation.

6 CONCLUSIONS AND FUTUREWORK
This paper proposesMKR, amulti-task learning approach for knowl-
edge graph enhanced recommendation. MKR is a deep and end-
to-end framework that consists of two parts: the recommendation
module and the KGE module. Both modules adopt multiple nonlin-
ear layers to extract latent features from inputs and fit the compli-
cated interactions of user-item and head-relation pairs. Since the
two tasks are not independent but connected by items and entities,
we design a cross&compress unit in MKR to associate the two tasks,
which can automatically learn high-order interactions of item and
entity features and transfer knowledge between the two tasks. We
conduct extensive experiments in four recommendation scenarios.
The results demonstrate the significant superiority of MKR over
strong baselines and the efficacy of the usage of KG.

For future work, we plan to investigate other types of neural net-
works (such as CNN) in MKR framework. We will also incorporate
other KGE methods as the implementation of KGE module in MKR
by redesigning the cross&compress unit.

APPENDIX
A Proof of Theorem 1

Proof. We prove the theorem by induction:
Base case: When l = 1,

v1 =ve⊤wVV
0 + ev⊤wEV

0 + bV0

=

[
v1

d∑
i=1

eiw
VV (i)
0 · · · vd

d∑
i=1

eiw
VV (i)
0

]⊤

+

[
e1

d∑
i=1

viw
EV (i)
0 · · · ed

d∑
i=1

viw
EV (i)
0

]⊤

+
[
b
V (0)
0 · · · bV (d )

0

]⊤
.

Therefore, we have

∥v1∥1 =

������
d∑
j=1

vj

d∑
i=1

eiw
VV (i)
0 +

d∑
j=1

ej

d∑
i=1

viw
EV (i)
0 +

d∑
i=1

b
V (d )
0

������

=

������
d∑
i=1

d∑
j=1

(wEV (i)
0 +w

VV (j)
0 )viej +

d∑
i=1

b
V (d )
0

������
.

It is clear that the cross terms about v and ewith maximal degree
is kα ,βviej , so we have α1+ · · ·+αd = 1 = 21−1, and β1+ · · ·+βd =
1 = 21−1 for v1. The proof for e1 is similar.
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Obviously, the maximal-degree term in ∥vl+1∥1 is the cross term
xy inv(a)l e

(b)
l . Since we have α1+ · · ·+αd = 2l−1 and β1+ · · ·+βd =

2l−1 for both x and y, the degree of cross term xy therefore satisfies
α1 + · · · + αd = 2(l+1)−1 and β1 + · · · + βd = 2(l+1)−1. The proof for
∥el+1∥1 is similar. □

B Proof of Proposition 1
Proof. In the proof of Theorem 1 in Appendix A, we have shown

that

∥v1∥1 =

������
d∑
i=1

d∑
j=1

(wEV (i)
0 +w

VV (j)
0 )viej +

d∑
i=1

b
V (d )
0

������
.

It is easy to see that wi = w
EV (i)
0 , w j = w

VV (j)
0 , and b =∑d

i=1 b
V (d )
0 . The proof is similar for ∥e1∥1. □

We omit the proofs for Proposition 2 and Proposition 3 as they
are straightforward.
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Abstract—Chinese scene text reading is one of the most 
challenging problems in computer vision and has attracted great 
interest. Different from English text, Chinese has more than 6000 
commonly used characters and Chinese characters can be 
arranged in various layouts with numerous fonts. The Chinese 
signboards in street view are a good choice for Chinese scene text 
images since they have different backgrounds, fonts and layouts. 
We organized a competition called ICDAR2019-ReCTS, which 
mainly focuses on reading Chinese text on signboard. This report 
presents the final results of the competition. A large-scale dataset 
of 25,000 annotated signboard images, in which all the text lines 
and characters are annotated with locations and transcriptions, 
were released. Four tasks, namely character recognition, text line 
recognition, text line detection and end-to-end recognition were set 
up. Besides, considering the Chinese text ambiguity issue, we 
proposed a multi ground truth (multi-GT) evaluation method to 
make evaluation fairer. The competition started on March 1, 2019 
and ended on April 30, 2019. 262 submissions from 46 teams are 
received. Most of the participants come from universities, research 
institutes, and tech companies in China. There are also some 
participants from the United States, Australia, Singapore, and 
Korea. 21 teams submit results for Task 1, 23 teams submit results 
for Task 2, 24 teams submit results for Task 3, and 13 teams submit 
results for Task 4. The official website for the competition is 
http://rrc.cvc.uab.es/?ch=12. 

I. INTRODUCTION 
Texts in natural images carry much important semantic 

information. Reading text in natural scene images has been 
widely studied recently since it is an important prerequisite for 
many content-based image analysis tasks such as photo 
translation, fine-grained image classification and autonomous 
driving. 

It is widely recognized that large-scale, well-annotated 
datasets are crucial to today’s deep learning based techniques. 
In scene text reading field, many scene text datasets have been 
collected. Especially for Chinese text reading, more and more 
Chinese scene text datasets are proposed, such as MSRA-500 
[1], RCTW [2], SCUT-CTW1500 [3], CTW [4]. 

Chinese text reading is a huge challenge task. Different 
from English text reading, Chinese has more than 6000 
commonly used characters. Besides, owing to the Chinese 
culture, the layouts, arrangements and fonts of Chinese 
characters are always in a great variety, as shown in Figure 1.  

The Chinese signboards in street view may be the best 
source for Chinese scene text images since they have different 

backgrounds, fonts and layouts. In Meituan-Dianping Group, a 
Chinese leading company for food delivery services, consumer 
products and retail services, there are many signboard images 
collected by Meituan business merchants. Based on this, we 
propose a competition for Chinese text reading on signboard 
and construct a large-scale challenging natural scene text 
dataset of 25,000 signboard images. About 200,000 text lines 
and 600,000 characters are labeled with locations and 
transcriptions. We set up four tasks for this competition, namely 
character recognition, text line recognition, text line detection 
and end-to-end recognition. Besides, we propose a multi 
ground truth (multi-GT) evaluation method considering the 
Chinese text ambiguity. As illustrated in Figure 2, it is difficult 
to determine whether some words should be merged to a text 
instance or not. We thus provide one or more ground truths for 
each test image and compare the predicted result with all the 
ground truths when evaluating. The best matched GT will be 
used to calculate the evaluation metrics. 

Figure 2. Chinese text ambiguity in signboard image. 

 Figure 1. Characters with various layouts and fonts. 
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The competition lasts from March 1st to April 30, 2019.  It 
receives lots of attention from the community. For all the four 
tasks, there are all together 46 valid teams participating in the 
competition and hundreds of valid submissions are received. In 
this report, we will present their evaluation results. 

II. DATASET AND ANNOTATIONS 
 The dataset, named ReCTS-25k, comprises 25,000 
signboard images. All the images are from Meituan-Dianping 
Group, collected by Meituan business merchants, using phone 
cameras under uncontrolled conditions. Different from other 
datasets, this dataset mainly focuses on Chinese text reading on 
the signboards. The layout and arrangement of Chinese 
characters in signboards are much more complex for the sake 
of aesthetics appearance or highlighting certain elements. 
Figure 1 shows some example images. 

 We manually annotate the locations and transcriptions for 
all the text lines and characters in the signboard images. Note 
that the utterly obscure and small text lines and characters are 
marked with a difficult flag.  Locations are annotated in terms 
of polygons with four vertices, which are in clockwise order 
starting from the upper left vertice. Transcriptions are UTF-8 
encoded strings. 

 The dataset is split into two subsets. The training set consists 
of 20,000 images, and the test set consists of 5,000 images. 
Moreover, 29335 character images and 10789 text lines images, 
cropped from the 5000 test images, are used for task 1 and task 
2 evaluation respectively. 

III. CHALLENGE TASKS 
Robust reading challenge on Chinese signboard consists of 

four tasks: 1) Character recognition, 2) Text line recognition, 3) 
Text line detection, 4) End-to-end recognition. Given that 
Chinese signboards have various layouts, fonts and 
orientations, character and text line reading are concerned. 
Therefore, in our competition, character based and text line 
based tasks are both evaluated. 

Note that the half-width character and its corresponding 
full-width character are regarded as one character in the 
evaluation of task 2 and task 4. Moreover, the English letters 
are not case sensitive. 

A. Task 1 – Character Recognition 
The aim of this task is to recognize characters of the cropped 

character images from Chinese signboards. As illustrated in 
Figure 3, the Chinese characters take the largest portion and are 
in diverse fonts. Participant is asked to submit a text file 
containing character results for all test images. The recognition 
accuracy is given as the metric: 

                         �������� � ������
������

 ,                                 (1) 
where N�����	is the number of characters predicted correctly and 
N����� is the total number of the test characters. 

B. Task 2 – Text Line Recognition 
The target of text line recognition is to recognize the 

cropped word images of scene text. The cropped text line 
images as well as the coordinates of the polygon bounding 
boxes in the images are given.  The given points are arranged 
in the clockwise order, starting from the top-left point. Figure 4 
shows some examples of the test set. The text line images may 
contain perspective and arbitrary arranged text lines. 

The results are evaluated by the Normalized Edit Distance 
between the recognition result and the ground truth. The edit 
distances are summarized and divided by the number of test 
images. The resulting average edit distance is taken as the 
metric and is formulated as follows: 

               �������� � � � �
�∑

���������
���	��������

����  ,                     (2) 

where �  stands for the Levenshtein Distance, ��  denotes the 
predicted text line and ���  denotes the corresponding ground 
truth, � is the total number of text lines. 

C. Task 3 – Text Line Detection 
The aim of this task is to localize text lines in the signboard. 

The input image is the full signboard images. The detection 
results submitted by the participants are required to give four 
vertices of the polygon in clockwise order. 

In some signboard, there always exist the following case, 
as shown in Figure 2. It is difficult to determine whether the 
boxes "砂锅"， “炒面”，“拌面”，“烩肉”，“泡馍” should be 
merged to a large text box or not. Therefore, we regard the two 
cases (Figure 2(a) and Figure 2(b)) as correct ground truth. We 
provide one or more ground truths for each test image. When 

 Figure 3. Chinese character test images. Figure 4. Text line test images. 
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evaluating, we compare the predicted result with all the ground 
truths and use the best matched one to calculate the evaluation 
metrics. 

Following the evaluation protocols of ICDAR 2017-
RCTW [2] dataset, the detection task is evaluated in terms of 
Precision, Recall and F-score with intersection-over-union 
(IoU) threshold of 0.5 and 0.7. The F-score at IoU=0.5 will be 
used as the only metric for the final ranking. All detected or 
missed ignored ground truths will not contribute to the 
evaluation result. 

D. Task 4 – End-to-End Recognition 
 The aim of this task is to localize and recognize every text 
instance in the signboard. The input image is the full signboard 
images. Participants are required to submit the text file 
containing all the recognized text lines locations and 
transcriptions for each test image. Similar to Task 3, the 
locations are four vertices in clock-wise order and the 
transcripts are UTF-8 encoded strings. 

 The evaluation process consists of two steps. First, each 
detection is matched to a ground truth polygon that has the 
maximum IOU, or it is matched to ‘None’ if none IOU is larger 
than 0.5. If multiple detections are matched to the same ground-
truth, only the one with the maximum IOU will be kept and the 
others are recorded as ‘None’. Then, we calculate the edit 
distances between all matching pairs by Formula (2). Since one 
test image may have multiple ground truths, as stated in Task 3, 
we also compare the predicted result with all the ground truths 
and use the best matched one to calculate the evaluation 
metrics. 

IV. ORGANIZATION 
The competition starts on March 1, 2019, when the RRC 

website is ready and open for registration. The training set is 
released on March 18, the first part of test set is released on 
April 12 and the second part of test set released on April 20. We 
revise the test set more than once to fixed some errors before 
releasing the test set. The RRC website opens for result 
submission on April 20 and closes at 11:59 PM PST, April 30. 

There are all together 46 valid teams participated in the 
competition. Most of the participants come from universities, 
research institutes, and tech companies in China. There are also 
some participants from the United States, Australia, Singapore, 
and Korea. 

All the teams submit their results through the RRC website. 
Each team is allowed to submit 5 results at most and we choose 
the best result among the 5 results as the final result. 21 teams 
submit results for Task 1, 23 teams submit results for Task 2, 24 
teams submit results for Task 3, and 13 teams submit results for 
Task 4. 

V. SUBMISSIONS AND RESULTS 
The evaluation script is implemented in Python. We run the 

script to evaluate all the submissions. Table I summarizes the 
top 5 results of Task 1. Methods are ranked by their accuracy. 
Table II summarizes the top 5 results of Task 2. Methods are 
ranked by their normalized edit distance. Table III summarizes 
the top 5 results of Task 3. Methods are ranked by their F-score. 

Table IV summarizes the top 5 results of Task 4. Methods are 
ranked by their normalized edit distance. You can view the 
complete ranking in the home page of the competition 
https://rrc.cvc.uab.es/?ch=12. 

A. Top 3 submissions for Task 1 
1. “BASELINE v1” (USTC-iFLYTEK) The method uses 

image classification methods and its ensemble. 

2. “Amap_CVLab” (Alibaba AMAP) The method adds 
res-block [5] (for the lower dimension feature collapse 
avoiding) and se-block [6]. Their training dataset contains both 
the ReCTS-25k and other data. 

3. “TPS-ResNet v1” (Clova AI OCR Team, 
NAVER/LINE Corp) The method uses Thin-plate-
spline(TPS) [7] based Spatial transformer network (STN) [8], 
which normalizes the input text images. They use ResNet [5], 
BiLSTM [9] and attention mechanism. Their training dataset 
contains the Chinese synthetic datasets (MJSynth and 
SynthText [10]) and real dataset (ArT [11], LSVT [12], RCTW 
[2], ReCTS-25k). 

B. Top 3 submissions for Task 2 
1. “SANHL” (South China University of Technology, 

Northwestern Polytechnical University, The University of 
Adelaide, Lenovo and Huawei) The method uses an ensemble 
framework, which consists of attention-based network, 
transformer network and CTC-based [13] network. Apart from 
the official training dataset, about 2 million synthesized 
samples are used for training. 

 2. “Tencent-DPPR Team” (Tencent-DPPR Team) The 
method uses five types of deep models, which mainly include 
CTC-based nets and multi-head attention based nets. All 
samples are resized to the same height before feeding into the 
network. Furthermore, besides ReCTS, they use a synthetic 
dataset containing more than fifty million images, as well as 
open-source datasets including LSVT [12], COCO-Text [14], 
RCTW [2] and ICPR-2018-MTWI. In terms of data 
augmentation, they mainly use Gaussian blur, Gaussian noise 
and so on. 

3. “HUST_VLRGROUP” (Huazhong University of 
Science and Technology) A CRNN based method. 

C. Top 3 submissions for Task 3 
 1. “SANHL_v4” (South China University of Technology, 
The University of Adelaide, Northwestern Polytechnical 
University, Lenovo, HUAWEI) The method uses a sequential-
free box discretization method to localize the text 
instances. Multi-scale testing and model ensemble are used to 
generate the final result. Their training dataset contains LSVT 
[12], ArT [11], MLT [15] and ReCTS-25k. 

 2. “Tencent-DPPR Team” (Tencent Data Platform 
Precision Recommendation) Their text detector is based on 
two-stage method with multi-scale training policy, and 
ResNet101 [5] is used as the backbone network. They use 
feature pyramid layers [16] to extract features instead of 
choosing one layer according to box sizes. They use LSVT [12] 
pre-trained model. 
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 3. “Amap-CVLab” (Alibaba AMAP, Alibaba DAMO 
Academy for Discovery, Adventure, Momentum and 
Outlook) The method is based on Mask R-CNN [17]. Their 
training dataset contains RCTW[2], ICDAR2017-MLT[15], 
LSVT[12], ReCTS-25k. 

D. Top 3 submissions for Task 4 
 1. “Tencent-DPPR Team” (Tencent-DPPR Team) In the 
detection part, they use a text detector based on two-stage 
method. This method uses ResNet101 [5] as feature extractor, 
and they design a policy to help proposals select feature 
pyramid layers [16] to extract features instead of choosing one 
layer according to box sizes. In detection ensemble stage, they 
apply a multi-scale test method with different backbones. When 
ensembling all the results, they develop an approach to vote 
boxes after scoring each box. In the recognition part, they use 
an ensemble model, which includes CTC-based nets and multi-
head attention based nets. For this task, they use the predicted 
confidence scores of cropped words and the ensemble results to 
select the reliable one among results predicted by all models. 

2. “SANHL” (South China University of Technology, 
Northwestern Polytechnical University, The University of 
Adelaide, Lenovo and Huawei) The method firstly detect 
possible text lines, and then predict strings by an ensembled 
recognition model. 

3. “HUST_VLRGROUP” (Huazhong University of 
Science and Technology) The method uses Mask R-CNN as 
text detector and a CRNN based approach to predict strings. 

E. Baseline submissions 
For reference, we submit a baseline method to Task 1, Task 

2, Task 3 and Task 4 respectively. The methods are 
implemented by ourselves. Their results are shown in Table I, 
II, III and IV. 

For Task 1, the character Recognition method is based on 
the densely connected convolutional network (DenseNet) [18]. 
Our network inherits from the DenseNet-169 network model 
with dense blocks, but we reduce the number of last dense block 
to 24 and all the growth rates in the networks are 32. The 
training dataset consists of ReCTS and synthetic data. 

For Task 2, We took the Chinese text line recognition as a 
sequence recognition task. We utilized a modified version of 
Inception-V4 [19], integrated with attention module to extract 
feature maps. The CTC layer for transcription is adopted. The 
baseline result is obtained by a single recognition model, the 
training dataset consists of ReCTS, RCTW [2], and LSVT [12], 
no synthetic data is utilized. 

For Task 3, the text detection method is based on SEG-FPN 
[20] and Pixel-link [21]. We build a unified framework, which 
combines pixel link and segment link in feature pyramid 
network to detect scene text. The training dataset only consists 
of ReCTS. 

For Task 4, we first detect the text line in the image. If the 
text line is horizontal, recognize it by the line recognition 
model; if the text line is vertical, character detection and 
character recognition model will be used. The text line 
detection part is the same as that for Task 3, the character 

recognition part is the same as that for Task 1, and the text line 
recognition part is the same as that for Task 2. A Faster-RCNN 
[22] based detection approach is adopted to detect Chinese 
character regions. 

VI. CONCLUSIONS 
We organize the competition on reading Chinese text on 

signboard (ReCTS). A large-scale challenging natural scene 
text dataset of 25,000 signboard images are released and four 
tasks are set up. We also propose a multi-GT evaluation strategy 
intended for Chinese text ambiguity. During the challenge, we 
receive hundreds of submissions from 46 teams, which shows 
the broad interest in the community. In the future, we plan to 
make the evaluation scripts available on the website 
https://rrc.cvc.uab.es/ and users can get the evaluation results 
shortly after they submit the results to the website. 
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TABLE I: RESULTS SUMMARY FOR THE TOP-5 SUBMISSIONS OF TASK 1. 

Ranking Team Name Affiliation Accuracy
1 BASELINE-v1 iFLYTEK, University of Science and Technology of China 0.9737
2 Amap_CVLab Alibaba AMAP 0.9728
3 TPS-ResNet-v1 Clova AI OCR Team, NAVER/LINE Corp 0.9612

4 SANHL_v4 
South China University of Technology, The University of Adelaide, Northwestern Polytechnical University, Lenovo, 
HUAWEI 0.9594

5 Tencent-DPPR Tencent (Data Platform Precision Recommendation) 0.9512
Baseline  Meituan Dianping 0.9140

TABLE II: RESULTS SUMMARY FOR THE TOP-5 SUBMISSIONS OF TASK 2. 

Ranking Team Name Affiliation N.E.D

1 SANHL_v1 South China University of Technology, The University of Adelaide, Northwestern Polytechnical University, Lenovo, 
HUAWEI 0.9555  

2 Tencent-DPPR Tencent (Data Platform Precision Recommendation) 0.9486 
3 HH-Lab-v4 * Huazhong University of Science and Technology (Visual and Learning Representation Group) 0.9483 
4 TPS-ResNet-v1 Clova AI OCR Team, NAVER/LINE Corp 0.9477 
5 Baseline-Beihang* Beihang University 0.9437 
Baseline  Meituan Dianping 0.9089

TABLE III: RESULTS SUMMARY FOR THE TOP-5 SUBMISSIONS OF TASK 3. 

Ranking Team Name Affiliation F-score

1 SANHL_v4 South China University of Technology, The University of Adelaide, Northwestern Polytechnical University, Lenovo, 
HUAWEI 0.9336  

2 Tencent-DPPR Tencent (Data Platform Precision Recommendation) 0.9303 
3 Amap-CVLab Alibaba AMAP, Alibaba DAMO Academy for Discovery, Adventure, Momentum and Outlook 0.9250 
4 HH-Lab * Huazhong University of Science and Technology (Visual and Learning Representation Group) 0.9127 
5 maskrcnn_text * Huazhong University of Science and Technology (Media and Communication Laboratory, Text detection) 0.9102 
Baseline  Meituan Dianping 0.9001

TABLE IV: RESULTS SUMMARY FOR THE TOP-5 SUBMISSIONS OF TASK 4. 

Ranking Team Name Affiliation N.E.D
1 Tencent-DPPR Tencent (Data Platform Precision Recommendation) 0.8150 

2 SANHL_v1 South China University of Technology, The University of Adelaide, Northwestern Polytechnical University, Lenovo, 
HUAWEI 0.8144  

3 HH-Lab * Huazhong University of Science and Technology (Visual and Learning Representation Group) 0.7943 
4 baseline_Beihang * Beihang University 0.7661 
5 SECAI * Institute of Information Engineering, Chinese Academy of Sciences, University of Science & Technology Beijing 0.7437 
Baseline  Meituan Dianping 0.7298

  * means student contestant 
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