Disentangled Contrastive Hypergraph Learning for Next POI
Recommendation

Yantong Lai"

Institute of Information Engineering,
Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences
Beijing, China
laiyantong@iie.ac.cn

Tianqi He
Meituan.com
Beijing, China
hetianqi@meituan.com

Daren Zha
Institute of Information Engineering,
Chinese Academy of Sciences
Beijing, China
zhadaren@iie.ac.cn

ABSTRACT

Next point-of-interest (POI) recommendation has been a promi-
nent and trending task to provide next suitable POI suggestions for
users. Most existing sequential-based and graph neural network-
based methods have explored various approaches to modeling user
visiting behaviors and have achieved considerable performances.
However, two key issues have received less attention: i) Most previ-
ous studies have ignored the fact that user preferences are diverse
and constantly changing in terms of various aspects, leading to
entangled and suboptimal user representations. ii) Many existing
methods have inadequately modeled the crucial cooperative associ-
ations between different aspects, hindering the ability to capture
complementary recommendation effects during the learning pro-
cess. To tackle these challenges, we propose a novel framework
Disentangled Contrastive Hypergraph Learning (DCHL) for next
POI recommendation. Specifically, we design a multi-view disen-
tangled hypergraph learning component to disentangle intrinsic
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aspects among collaborative, transitional and geographical views
with adjusted hypergraph convolutional networks. Additionally,
we propose an adaptive fusion method to integrate multi-view
information automatically. Finally, cross-view contrastive learn-
ing is employed to capture cooperative associations among views
and reinforce the quality of user and POI representations based
on self-discrimination. Extensive experiments on three real-world
datasets validate the superiority of our proposal over various state-
of-the-arts. To facilitate future research, our code is available at
https://github.com/icmpnorequest/SIGIR2024_DCHL.
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1 INTRODUCTION

Due to the prevalence of location-based social networks [5], people
are increasingly willing to record and share their daily life and
experience along with geographical information on location-based
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social networking applications (e.g., Facebook, Instagram, Yelp and
Dianping). Consequently, personalized recommender systems have
been widely utilized to help users discover point of interests (POIs)
from such large amount information. In POI recommender systems,
next POI recommendation is one of significant and fundamental
tasks. Formally, next POI recommendation aims to provide suit-
able predictions for users in the next movement according to their
historical trajectories [17, 18, 31, 34, 36, 37].

Generally, most existing methods treat next POI recommenda-
tion as a sequential prediction task and adopt sequential meth-
ods to model transition patterns, ranging from Markov Chains
[4, 33] to recurrent neural networks (RNN) [9, 24, 35, 51] and re-
cent self-attention mechanism [22, 25]. Among these sequential-
based methods, some approaches [22, 24, 25, 35, 51] validate the
importance of spatio-temporal contexts (e.g., spatial or tempo-
ral intervals and spatio-temporal gates), and incorporate such in-
formation in mining the regularity of users’ trajectories. How-
ever, these sequential-based methods mainly focus on each user’s
intra-sequence exploiting but fail to explore collaborative informa-
tion from other users. Inspired by the great success of graph neu-
ral networks (GNN) in capturing similarities between high-order
neighbors and modeling complex relationships, some researchers
[8, 15, 17-19, 21, 23, 31, 37, 45] leverage GNN-based or hypergraph
neural network (HGNN) based methods to enrich POI and user rep-
resentations. For example, Graph-Flashback [31] utilizes a spatial-
temporal knowledge graph to endow POI representations and in-
corporates them into RNN-based methods to capture sequential
transition patterns for next POI recommendation. Inspired by the
flexible structure of hypergraph to represent high-order neighbors
and to capture high-order collaborative signals, Lai et al. [17] pro-
posed a multi-view spatial-temporal enhanced hypergraph network
to capture spatial-temporal information and distill high-order col-
laborative signals simultaneously. The proposed model MSTHN
alleviates the data sparsity issue and over-smoothing effects in
GNN-based methods for next POI recommendation.

While the aforementioned approaches have achieved state-of-
the-art performances for next POI recommendation, two key issues
remain less explored.

First, most previous studies have ignored the fact that user pref-
erences are diverse and constantly changing in terms of various
aspects, leading to suboptimal and entangled user representations.
In next POI recommendation, the rationale behind user-POI inter-
actions is driven by several potential factors (e.g., spatial, temporal
and categorical) [30], such as buying a cup of coffee near the of-
fice or being attracted by a far away restaurant for its specific
cuisine. However, the learned user preferences in current graph or
hypergraph based approaches are entangled. They only considered
coarse-grained user-POI interactions, but ignored various potential
aspects behind their behaviors, hindering the ability to capture
diverse and accurate user preferences. Therefore, it is challenging
to disentangle and model multi-aspect user representations that
driven their behaviours.

Second, many existing methods have inadequately modeled the
crucial cooperative associations between different aspects, hinder-
ing the ability to capture complementary recommendation effects
during the learning process. Specifically, the complementary effect
means that it can combine information from multiple views to gain
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a more comprehensive understanding of the underlying data and
enhance recommendation performances. In next POI recommen-
dation, some researchers [17, 20, 28, 29] have adopted multi-view
learning or disentangled learning paradigm to learn view-specific
or aspect-specific representations separately, and simply fuse them
for next POI prediction. However, such methods fail to differenti-
ate the similarities among views or aspects. Additionally, existing
works [12, 42] only consider the cooperative associations at the
level of prediction, resulting in no mutual enhancement among
the views is guaranteed to be captured. Therefore, it is an urgent
need to properly model the crucial cooperative associations and
encourage the mutual enhancement among views.

In this paper, we propose a novel model Disentangled Contrastive
Hypergraph Learning (DCHL) for next POI recommendation, to
address above challenges. For addressing the first limitation, our
model disentangles multi-view representations by considering com-
plex collaborative, global transitional and geographical relation-
ships between users and POIs, which have been proved impor-
tant, effective and interpretable for next POI recommendation
[17, 18, 28-30]. Inspired by the highly flexible ability to repre-
sent high-order neighbors, we innovatively design three distinct
hypergraphs-collaborative hypergraph, transitional hypergraph,
and geographical hypergraph, to represent nodes in global depen-
dencies from different views. We then encode POIs into disentan-
gled embeddings for decoupling intrinsic aspects among collabo-
rative, transitional and geographical views by proposing adjusted
method on aggregation and propagation of hypergraph convolu-
tional network, respectively. After disentanglement, we can obtain
decoupled user preferences on collaborative, transitional and ge-
ographical aspects according to specific hypergraph structure. To
integrate and balance multi-view information, an adaptive fusion
method is further utilized to adaptively synthesize the final user
representation, leading to more interpretable and personalized rec-
ommendations. For addressing the second limitation, our model
captures crucial cooperative associations among different views by
designing a cross-view contrastive objective to consider comple-
mentary recommendation effects through self-augmentation. Ex-
perimental results on three real-world datasets have demonstrated
the effectiveness of our DCHL for next POI recommendation.

In summary, the main contributions of our work are as follows:

e We explore two challenging yet practical problems in next
POI recommendation and propose a novel framework dis-
entangled contrastive hypergraph learning (DCHL) to solve
them and enhance recommendation performances.

e We innovatively design three distinct hypergraphs among
collaborative, transitional and geographical views and pro-
pose adjusted method on aggregation and propagation of
hypergraph convolutional networks, to solve the limitation
of entangled and suboptimal user representations.

e We adapt cross-view contrastive learning to cooperatively
supervise each other between views via self-augmentation,
to solve the limitation of hard to capture complementary
recommendation effects during the learning process.

o Extensive experiments on three real-world datasets validate
the effectiveness of our proposed DCHL over various state-
of-the-art methods for next POI recommendation.
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2 PRELIMINARY

In this section, we first formulate the task of next POI recommen-
dation, and then introduce the definition of hypergraph.

2.1 Task Formulation

Let U = {uq, uy, ~~~>“|11|} and L = {Iy, 1, ..., I| |} be a set of users
and POIs, respectively. Each POI l € £ has a unique geographical
coordinates (longitude, latitude) tuple, i.e., (lon, lat). For each user
u € U, we obtain her/his trajectory s, = {(Ly,i tg,,)|li = 1,2,..},
where each tuple (I, ;, t;, ) indicates user u visited POI I ; at times-
tamp ¢ .. ,

Givena target user u and her/his trajectory sequence s, the goal
of next POI recommendation is to recommend top-K POIs that u
may visit in the next timestamp.

2.2 Hypergraph

Hypergraph [1, 2, 10, 11] is a generalization of graph, where an
edge connects two or more vertices. Formally, a hypergraph can be
represented by G = {V, &}, where V denotes the vertices set and
& represents the hyperedges set. Incidence matrix H € RIVIXIEl g
introduced to describe the topology structure of hypergraph. When
node v € V is in hyperedge e € &, Hy ¢ = 1, otherwise 0.

3 METHODOLOGY

In this section, we present our proposed framework DCHL in detail.
As illustrated in Figure 1, we first elaborate on the construction
of multi-view disentangled hypergraphs from collaborative, tran-
sitional, and geographical views based on users’ check-ins. Then,
we perform disentangled hypergraph learning by designing hy-
pergraph convolutional networks with adjusted aggregation and
propagation method to decouple intrinsic aspects. After that, we
learn and fuse multi-view user preferences according to hypergraph
structure and a proposed adaptive fusion method. Additionally, we
utilize cross-view contrastive learning to capture complementary
recommendation effects among different views. Finally, we demon-
strate our prediction and optimization approach.

3.1 Multi-View Disentangled Hypergraph
Learning

3.1.1  Multi-View Disentangled Hypergraph Construction. In next
POI recommendation, there exist some complex relationships be-
tween users and POlIs, such as user-POI interactions, POI-POI tran-
sitional relationships and POI-POI geographical relationships. To
represent such relationships, previous methods [28, 29, 38] lever-
age graph, where users and POIs can be regarded as nodes and
the relationships between them are edges. However, conventional
graph structure is limited to pairwise relationship, which could
not connect higher-order neighbors within the same specific se-
mantics. Motivated by the highly flexible structure of hypergraph,
we innovatively design three distinct hypergraphs (Figure 1) as
follows:

Collaborative View Hypergraph. The construction of col-
laborative view hypergraph involves building a hypergraph that
captures high-order collaborative signals between users and POIs.
Formally, we construct the collaborative view hypergraph G¢ =
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(Ve, Ec), where Ve denotes the POIs set. In the hypergraph Gc,
we represent each user’s trajectory s, as a hyperedge, so the hy-
peredge set Ec consists of all users’ trajectories. Additionally, in-
cidence matrix He € RILIXIUI g introduced to describe user-POI
interactions. This collaborative view hypergraph provides valuable
insights into both intra-sequence and inter-sequence relationships.
By leveraging the hypergraph, our model can effectively discover
similar users who have similar visiting patterns.

Transitional View Hypergraph. Since hyperedge in normal
hypergraph structure is undirected, it is not fit for representing di-
rected relationships (e.g., POI-POI transitional relationship). There-
fore, we propose to model such transitional relationship with a
directed hypergraph. Formally, we design a transitional view hy-
pergraph Gr = (Vr, 1), where nodes are POIs and hyperedges
consist of directed transitional relationships between POIs in all
trajectories. Incidence matrix Hy € RILIXIET] denotes directed
POI-POI transitional relationship, where POIs in rows represent
source nodes and POIs in columns are target nodes. Transitional
view focuses on mining transitional patterns and helps explore
potential POIs from a global view.

Geographical View Hypergraph. The construction of geo-
graphical view hypergraph involves building a hypergraph that
depicts POI-POI geographical relationships within some geograph-
ical constraints. Formally, we construct the geographical view hy-
pergraph G = (Vg, EG) where Vi denotes the POIs set. In the
hypergraph Gg, a hyperedge contains POIs within specific distance
threshold A; by calculating Haversine distance [7] between them.
Incidence matrix Hg € RI£1XI&c depicts POI-POI geographical
relationship. Specifically, if the Haversine distance between POI [;
and [; is no larger than distance threshold A4, we set Hg’] )= 1.
The geographical view hypergraph takes geographical influence
into consideration and reflects user geographical preferences.

After constructing hypergraphs from collaborative, transitional
and geographical views, we can explicitly model and obtain richer
POl representations in a disentangled learning way. Moreover, learn-
ing from multiple views leads to more holistic and accurate POI
representations.

3.1.2  Disentangled Hypergraph Convolutional Networks. Aiming
to learn multi-view disentangled POI representations from above
three hypergraphs, we propose adjusted methods on aggregation
and propagation of hypergrpah convolutional network, respectively.
Before encoding, we initialize user embeddings U € RIUIXd and
POI embeddings L € RILIXd yig look-up table, where d denotes
embedding dimension. Next, we will introduce our proposed three
hypergrpah neural networks separately.

Collaborative Hypergraph Convolutional Network. After
constructing collaborative hypergraph Gc, we develop collabora-
tive hypergraph convolutional network with two-step information
propagation scheme to capture high-order POIs iteratively. In the
node-hyperedge-node propagation scheme, hyperedges serve as
mediums for nodes aggregation within the hyperedge and propaga-
tion across hyperedges. To be more specific, for each node [ of the
hyperedge e in hypergraph Gc, as shown in Figure 1, we perform
the following two operations to update its representation:
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Collaborative Hypergraph Convolutional Network
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Figure 1: The overall framework of our proposed DCHL

Intra Hyperedge Aggregation. For hyperedge e € Ec, we aggre-
gate its member embeddings to generate medium message as:

mc,e = AGGpae ({1]1 € e}) (1)

where AGG2¢(+) denotes node to hyperedge aggregation function
and 1 € R? denotes the embedding of node I.

Inter Hyperedge Propagation. Since each node [ may belong to
several hyperedges, in this stage, we aggregate message from related
hyperedges to refine the representation of node / as:

iC = AGGEZn({mC,e|e € 8C,l}) (2)

where AGGezy, (+) denotes hyperedge to node propagation function,
&, denotes related hyperedges set of node [ in hypergraph Gc and
Ic € R represents the refined embedding of node [ in hypergraph
Gc.

Through above two steps, our collaborative hypergraph convo-
lutional operation can capture collaborative signals that motivates
users on choosing POIs. By stacking multiple layers, we can ex-
plore higher-order relationships, and the message passing from the
(¢ — 1)-th layer to the ¢-th layer of node [ is defined as:

(f) l([) Ig*l) (3)

where ec; denotes the t’-th layer embedding of node [ in collabo-
rative view. We apply residual connections to alleviate the over-
smoothing issue of GNN. Finally, we average the embeddings ob-
tained at each layer to generate the final representation for node

I:

L
1 ¢
eI = 17 2, e @

where L denotes the total number of collaborative hypergraph con-
volutional layers. After that, we can get POI representations Ec 1, €
RIL1Xd of collaborative view. Besides, we implement AGGp2¢ (+)
and AGGgzp, () with mean pooling for its effectiveness and effi-
ciency in collaborative, transitional and geographical views.

Transitional Hypergraph Convolutional Network. Since
collaborative hypergraph convolutional network cannot deal with
directed hypergraph, we propose transitional hypergraph convolu-
tional network for transitional view hypergraph Gr. Similarly, it
adopts the two-step aggregation and propagation scheme but dif-
fers from above. To be more specific, for source node /;, target node
l; and the hyperedge e in hypergraph G, as shown in Figure 1, we
introduce our proposed directed node-hyperedge-node scheme:

Source Node to Hyperedge Aggregation. Similar to intra hyperedge
aggregation in collaborative hypergraph convolutional network,
we aggregation source node embeddings to hyperedge e € Er to
generate medium message mr , = AGGpz. ({1;|l; € e}).

Hyperedge to Target Node Propagation. Since transitional view hy-
pergraph Gr is directed, we can only propagate related hyperedge
embeddings to target nodes to refine its representation:

lT,j = AGGepp({mr e € 81]_}) (5)

where &;; denotes related hyperedges set that transfers transitional
information from related source nodes to target node I;, and I7,; €
RY.

Through the directed hypergraph convolutional operation, our
transitional view hypergraph can capture POI-POI transitional re-
lationships from the global view. Analogous to collaborative hyper-
graph convolutional network for propagation through L layers, we
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finally obtain POI representations Erj, € RILIXd of transitional
view.

Geographical Hypergraph Convolutional Network. In geo-
graphical view hypergraph G, a hyperedge aggregates POIs within
a specific distance threshold A,. As illustrated in Fig. 1, for each POI
I of hyperedge e in G5, we perform the following node-hyperedge-
node paradigm to update POI representations of geographical view:

Node to Hyperedge Aggregation. Similar to intra hyperedge ag-
gregation described in collaborative hypergraph convolutional net-
work, we aggregate embeddings of POIs in hyperedge e to generate
its medium message as mg = AGGpze({1]l € e}), wherel € RY
denotes the embedding of node [.

Hyperedge to Node Propagation. Since each hyperedge only con-
tains POIs that satisfy physical distance, the aggregated message
mg . should not propagate across hyperedges unlimitedly. Specifi-
cally, hyperedge to node operation propagates aggregated message
from other nodes within physical distance to update representa-
tion of node [ as Ig = AGGez, ({mg cle € E;}), where &; denotes
related hyperedges set that meets geographical constraints.

Similar to above two hypergraph convolutional networks, we
also stack L layers for higher-order neighbors information and apply
residual connections to alleviate the over-smoothing issue. Finally,
we obtain POI representations Eg 1. € RILIXd of geographical view.

By designing three distinct adjusted aggregation and propaga-
tion methods of hypergraph convolutional networks, we achieve
the goal to disentangle POI representations from collaborative, tran-
sitional and geographical views.

3.2 Adaptive Fusion for User Representation

As mentioned above, we obtain decoupled POI representations
Ecr,ErpandEgy € RIL1%d from collaborative, transitional and
geographical views. Based on the structure of user-POI interactions,
we learn disentangled user representation as follows:

Exu =HL Exp (6)

where X € {C,T,G} and Hg e RIUIXILL is the transpose of
incidence matrix Heo € RILIXIUI i collaborative view. Conse-
quently, we obtain disentangled user representations Ec 7, ET i
and Egy € RIUIXd that driven their behavior from learned POI
intrinsic collaborative, transitional and geographical aspects.
Then the core problem comes to how to fuse decoupled multi-
view user representations for their final preferences. Common fu-
sion ways are element-wise addition, soft attention or concate-
nation operations, but they either ignore different importance of
each view or lack of interpretability. To solve the limitation, we
propose an adaptive fusion method to fuse three view-specific user
representations by designing three different gates as:

Eru = AcEcy + ATETu + AGEGuU (7)

where AX,U = O'(EnyWX), X € {C, T,G} and EF,U € Rlﬂlxd.
Wy € R are trainable weights respectively and o is the activation
function. We choose Sigmoid here, for ReLU may cause information
loss when the embedding is negative. Subsequently, our model
can automatically discriminate the importance of collaborative,
transitional and geographical views for user preference.
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For final POI representation, we perform addition operation to
fuse themasEpy =Ecr +Er +Eg,Epp € RI£1%d_The reason
for not applying the same adaptive fusion but simple addition on
final POI representation is to reduce complexity.

3.3 Cross-View Contrastive Learning

In this subsection, aiming to capture crucial cooperative associa-
tions among collaborative, transitional and geographical views, we
design cross-view contrastive learning to augment view-specific
user and POI representations with self supervision signals. Our
contrastive learning component maximizes the agreement between
views, allowing them work cooperatively to capture complementary
recommendation effects. In particular, we take the same user/POI
of different views as positive pairs (e.g., (ec . er,y,)) and treat views
of different users/POIs as negative pairs. Formally, we define our
contrastive loss between collaborative and transitional views for
user representations with InfoNCE [27] as:

eXP(S(ec,u, eT,u)/T)

1
IV =— ) -lo 8
Cr= a1 270 g emtsteca ererd O

where s(-,-) is cosine similarity function and 7 is a temperature
hyer-parameter. Analogously, we can define contrastive loss for
users between collaborative and geographical views as jCI,JG’ and
contrastive loss between transitional and geographical views as
jT[’JG. After that, we sum contrastive loss between any two views
to obtain final contrastive loss for user presentations as:

U U U U
Jss1 =Icr+Ice+Ire )
Similarly, we can obtain final contrastive loss for POI represen-

tations based on Equation 8-9 as jSI:?L By averaging contrastive
losses of users and POIs, we obtain the final contrastive loss as:

Tssi. = Tssp. + Tssi (10)

To further alleviate the overfitting issue during cross-view con-
trastive learning, we perform hypergraph augmentation operation
on three constructed hypergraphs with hyperedge dropout (dropout

ratio ) method. It helps improve robustness of learned representa-
tions to counter certain noise.

3.4 Prediction and Optimization

With the fused user and POl embeddings Er, iy, EF, 1, we compute the
interaction score between user u and target POI [ via dot product
as ¥, = softmax(elzuep,l). Here, er,, and ep; denote the final
embedding of user u and POI I.

We formulate the learning objective as a cross-entropy loss func-
tion, which has been largely used in next POI recommendation:

Tree == ) > (Vs 1og(Fun) + (1= yu) log(1 = y,,0)) (1)
ucUleL
where y,, ; equals to 1 if user u visits the POI [ and 0 otherwise.
Finally, we integrate the self-supervised loss with our recom-
mendation loss into a multi-task learning objective as follows:

T = JRrec + M IssL + 121102 (12)

where ||©||2 represents the L2 regularization of all parameters for
preventing over-fitting issue under the control of A3 and A; denotes
the weight of self-supervised signals.
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Table 1: Dataset statistics

#Users #POlIs #Check-ins #Sessions Sparsity

NYC 834 3,835 44,686 8,841 98.61%
TKY 2,173 7,038 308,566 41,307 97.82%
Meituan 18,451 49,143 677,609 140,069 99.93%

4 EXPERIMENTS

In this section, we present our experimental setup and results on
three real-world datasets.

4.1 Experimental Setting

4.1.1 Datasets. We conduct experiments on three real-world LBSN
datasets: Foursquare-NYC (NYC for abbreviation), Foursquare-
TKY (TKY) [48] and Meituan. The NYC and TKY datasets are sepa-
rately collected from New York city and Tokyo city over 11 months
from Foursquare. The Meituan dataset is an industrial dataset col-
lected from one of the largest life service platforms in China, and
we sample the data of sponsored search advertising delivery service
in Beijing from September to December in 2023.

Following previous works [17, 35], we first sort the recorded user
interactions in each dataset in chronological order and eliminate
unpopular POIs that are visited by less than 5 users. Then, we split
each user’s complete check-ins into sessions within 24 hours and
remove those which includes fewer than 3 records. Furthermore,
inactive users with less than 3 sessions are filtered out. According to
[35], the first 80% sessions of each user are used for training and the
rest for testing. To avoid data leakage when predicting next POI on
testing dataset, we choose POIs that are later than all check-ins in
training dataset. The statistics of pre-processed datasets are shown
in Table 1.

4.1.2  Evaluation Metrics. Following most existing works in next
POI recommendation, we adopt two widely used evaluation metrics:

Recall@K and Normalized Discounted Cumulative Gain (NDCG@K).

Recall@K measures the rate of the label within top-K recommenda-
tions and NDCG@K reflects the quality of ranking lists. For fairness,
we repeat experiments on each metric for 10 times and report the
averaged Recall@K and NDCG@K with the K € {5, 10}.

4.1.3  Baselines. We compare our DCHL with following representa-
tive methods for next POI recommendation, including 1) statistical-
based method UserPop; 2) RNN-based methods STGN and LSTPM;
3) self-attention-based method STAN; 4) GNN-based or hypergraph-
based methods Light GCN, SGRec, GETNext, MSTHN and STHGCN;
6) graph or hypergraph contrastive learning based method Disen-
POI and HCCF:

UserPop: It ranks the most popular POIs according to each
user’s visiting frequency.

STGN [51]: It is an LSTM-based model that introduces spatial
and temporal gates for users’ long- and short-term preferences.

LSTPM [35]: It is an LSTM-based model that captures long- and
short-term preferences with a non-local network and geo-dilated
LSTM.
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STAN [25]: 1t is a self-attention based model that explicitly
considers spatial-temporal influences within a user’s check-in se-
quence.

LightGCN [14]: It is a GNN-based collaborative filtering model
that omits the non-linear activation and feature transformation
during propagation.

SGRec [19]: A GNN-based method, which proposes Seq2Graph
augmentation and captures collaborative signals among one-hop
neighbors.

GETNext [49]: A state-of-the-art GNN enhanced Transformer
method, which utilizes global transition patterns and captures col-
laborative signals for next POI prediction.

MSTHN [17]: A state-of-the-art multi-view spatial-temporal
hypergraph method that jointly learns representations of users and
POIs from local and global views with hypergraph for capturing
high-order collaborative signals.

STHGCN [45]: A state-of-the-art spatio-temporal hypergraph
method that integrates complex high-order information and global
collaborative relations among trajectories.

DisenPOI [29]: It is a state-of-the-art graph disentangled con-
trastive learning based method that extracts disentangled repre-
sentations of both sequential and geographical influences with
contrastive learning.

HCCEF [40]: A state-of-the-art hypergraph contrastive learning
based method that jointly captures local and global collaborative
relations with a hypergraph enhanced cross-view contrastive learn-
ing architecture.

For fairness comparison, we remove the POI categorical infor-
mation in SGRec, GETNext and STHGCN, when comparing with
other methods that do not use.

4.1.4  Parameter Settings. Our experiments are conducted with
PyTorch 1.12.0 on 80 GB Nvidia A100 GPU. For baselines, we firstly
preserve the settings as provided in original papers and fine-tune
each model’s hyperparameters on three datasets. For our DCHL, we
adopt Adam [16] as optimizer with a learning rate of 1e~3, weight
decay of 5e~* and hyperedge dropout rate of {0.25,0.5,0.75,1}. We
apply the same dimension size d = 128 for user and POI embeddings.
In each batch, we pad sessions which do not meet the maximum
session length in batch. Furthermore, we empirically choose 2.5km
(for NYC and TKY) and 0.15km for Meituan as distance threshold.
The layer number of hypergraph convolutional network is chosen
from {1, 2,3,4,5}. The temperature parameter 7 is searched from
the range {0.1,0.3,0.5, 1, 3, 5, 10} to control the strength of gradients
in our contrastive learning. The regularization weight A; and A3 are
tuned from the range {le_s, 1e % 1e73,1e72, le_l} for loss balance.

4.2 Performance Comparison

The results of all the methods are reported in Table 2. From the
results, we have the following observations.

Our proposed DCHL achieves the best results on all datasets. Our
DCHL consistently outperforms all baselines on three datasets in
terms of all evaluation metrics. We contribute the improvements to
the following aspects: i) By considering collaborative, transitional
and geographical views via disentangled hypergraph learning, our
DCHL disentangles multi-view user preferences that driven their be-
haviors and alleviates the data sparsity issue by proposing adjusted
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Table 2: Performances comparison on three datasets in terms of Recall and NDCG. The best and the second best performances
are bolded and underlined, respectively. The relative improvements are calculated between the best and the second best scores

Method NYC TKY Meituan
R@5 R@10 N@5 N@10 | R@5 R@10 N@5 N@10 | R@5 R@10 N@5 N@10
UserPop | 0.2866 0.3297 0.2283  0.2423 | 0.2229 0.2668 0.1718 0.1861 | 0.2028 0.2489  0.1961  0.2016
STGN 0.2371 0.2594  0.2261 0.2307 | 0.2112 0.2587 0.1482  0.1589 | 0.2004 0.2441 0.1891 0.1933
LSTPM 0.2495 0.2668  0.2425 0.2483 | 0.2203 0.2703 0.1556 0.1734 | 0.2021 0.2615 0.2132  0.2287
STAN 0.3523  0.3827 0.3025 0.3137 | 0.2621 0.3317 0.2074 0.2189 | 0.2879 0.3168 0.2337  0.2419
LightGCN 0.3221 0.3488  0.2958 0.3042 | 0.2213 0.2594 0.1977 0.2098 | 0.2556 0.2979 0.2211 0.2307
SGRec 0.3451 0.3723 0.3052 0.3178 | 0.2537 0.3213 0.2221 0.2447 | 0.2859 0.3112 0.2362  0.2431
GETNext | 0.3572 0.3866 0.3079  0.3094 | 0.2686 0.3282 0.2212  0.2242 | 0.3125 0.3478 0.2413  0.2509
MSTHN 0.4076  0.4398 0.3612 0.3702 | 0.3378 0.3927 0.2567 0.2721 0.3641 0.3977 0.2842  0.2963
STHGCN | 0.4081 0.4366 0.3626  0.3703 | 0.3392 0.3924 0.2592 0.2693 | 0.3653 0.3944 0.2838 0.2959
DisenPOI | 0.3577 0.3831 0.2979  0.3071 | 0.2692 0.3314 0.2263 0.2332 | 0.3275 0.3516 0.2435 0.2521
HCCF 0.3534  0.3745 0.3025 0.3134 | 0.2689 0.3253  0.2325 0.2429 | 0.3260 0.3495 0.2523 0.2638
DCHL 0.4385 0.4861 0.3859 0.4017 | 0.3662 0.4083 0.2951 0.3078 | 0.3957 0.4286 0.3113 0.3220
%Improv +7.45 +10.53 +6.43 +8.48 +7.96 +3.97 +13.85 +13.12 +8.32 +7.77 +9.54 +8.67

aggregation and propagation methods of hypergraph convolutional
network. ii) Benefiting from our designed cross-view contrastive
learning schema, our DCHL can self-augment learned view-specific
representations and distill supervision signals for capturing com-
plementary recommendation effects during the learning process.

Among all baselines, methods that leverage spatial-temporal in-
formation perform better than those do not use. For example, GNN-
based method SGRec, DisenPOI and GETNext also surpasses Light-
GCN on three datasets, especially by 23.86% in terms of Recall@10
on TKY dataset. DCHL, MSTHN and STHGCN under hypergraph
neural network paradigm outperform HCCF that only focuses on
user-item interactions modeling on three datasets. Additionally, our
DCHL outperforms MSTHN and STHGCN, for modeling potential
decoupled factors behind interactions. Moreover, DisenPOI which
disentangles geographical and sequential influences also outper-
forms SGRec on both recall and ndcg, and surpasses GETNext on
recall but weak on ndcg. The reason is due to the utilization of
global transitional influence. They prove the importance and ne-
cessity of modeling multi-view representations for users and POIs
in an explicit disentangled learning way.

From Table 2, methods that leverage non-consecutive POIs in-
formation perform better than those mainly focus on sequential
modeling. For instance, STAN outperforms RNN-based methods
STGN and LSTPM for learning from non-adjacent POIs intra se-
quence. HGNN-based methods (e.g., MSTHN, STHGCN and DCHL)
perform better than GNN-based methods (e.g., SGRec and GETNext)
for capturing higher-order collaborative signals. They can alleviate
the data sparsity issue and over-smoothing issue of GNN. More-
over, most graph or hypergraph contrastive learning based methods
perform better than GNN-based approaches (e.g., LightGCN and
SGRec), indicating the effectiveness of capturing cooperative asso-
ciations between views for performance enhancements. The utiliza-
tion of cross-view contrastive learning encourages self-supervision
between each view and captures implicit complementary effects.

Table 3: Ablation study on key components of DCHL w.r.t.
Recall@10 and NDCG@10

Method NYC TKY Meituan
R@10 N@10 | R@10 N@10 | R@10 N@10
w/o C 0.4741 0.3941 | 0.3925 0.3007 | 0.3980 0.3050
w/o T 0.4839 0.4011 | 0.4008 0.2990 | 0.3916 0.2990
w/oG | 0.4817 0.3969 | 0.3982 0.3048 | 0.4148 0.3143
w/o CL | 0.4841 0.4006 | 0.4021 0.2983 | 0.3598 0.2721
DCHL | 0.4861 0.4017 | 0.4044 0.3078 | 0.4286 0.3220

4.3 Ablation Study

4.3.1 Effectiveness of Key Components of DCHL. To investigate
the effectiveness of each component of our DCHL, we conduct
an ablation study to examine component-specific benefits from
following: i) w/o C that removes collaborative view; ii) w/o T that
removes transitional view; iii) w/o G that removes geographical
view; iv) w/o CL that removes cross-view contrastive learning.
The performance results are reported in Table 3 and we have the
following observations:

First, when removing collaborative view of DCHL, performances
drop clearly. It strongly indicates the importance of modeling user-
POI interactions, for it can distill higher-order collaborative signals.
Second, when removing transitional view of DCHL, performances
decrease slightly compared with other variants on NYC and TKY
datasets. It proves that collaborative view and geographical view
achieve complementary effects for performances and user-POl inter-
actions could reflect part of user preference. Since Meituan dataset
is much sparser than NYC and TKY datasets, capturing global transi-
tional relationship helps alleviate the data sparsity issue. The result
is consistent with GETNext and STHGCN, which also consider
global transitional influence. Third, when removing geographical
view of DCHL, performances drop on NYC and TKY, for not captur-
ing disentangled mutual effects of geographical view. However, on
Meituan dataset, it has least effect. The reason is due to the adoption
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Figure 2: Performance comparison among various informa-
tion fusion methods (i.e., sum, concatenation and attention)

of data from delivery service and users are not so sensitive to geo-
graphical influence compared with check-ins by themselves. Fourth,
when removing cross-view contrastive learning, performances have
least impact on both NYC and datasets, but the most impact on
Meituan dataset. It indicates the important complementary effects
between disentangled three views when user considers delivery
services. Moreover, cross-view contrastive learning can enhance
performances via self-supervision augmentation.

4.3.2  Effectiveness of Adaptive Fusion for User Representation. Af-
ter we obtain three disentangled user preferences, we compare
our adaptive fusion method with various information fusion ap-
proaches (i.e., concatenation, element-wise sum and attention) for
comprehensive user representations (Figure 2). From Figure 2, the
proposed adaptive fusion method outperforms other variants on
the three datasets, especially on Recall@10. The reason owes to the
learned weights can adaptively balance the contributions of col-
laborative, geographical and transitional information, respectively.
Noticeably, trainable fusion method attention play worse than our
proposed adaptive fusion method on three datasets and even worse
than element-wise sum and concatenation. It heavily depends on
the quality of learnable weights, while our adaptive fusion learns
the weight based on three disentangled user preferences.

4.4 User Cold-Start Performance Analysis

We further verify if our DCHL could alleviate the data sparsity issue.
We then divide users into different groups based on the number
of their interactions, e.g., the top 15% as the most active users, the
bottom 15% as inactive users and the rest are normal users. Each
group are separately measured by recall and ndcg metrics. Here, we
evaluate different user group performances based on trained DCHL
(Figure 3 (a)(b)) and trained DCHL model with learned users and
POIs embeddings from corresponding training datasets (Figure 3
(c)(d)). From Figure 3, active user group performances outperform
normal and inactive groups on NYC and TKY datasets, but are worst
on Meituan dataset. The reason is that active users would hang on
delivery service platforms even without strong purchase intentions
and their behaviors will introduce noise and lead to performance
declination. It is worth noting that inactive user group outperforms
other two groups on NDCG@10 and achieve great performance
on Recall@10. It validates the importance of high-order collabora-
tive signals and alleviates the data sparsity issue in user cold-start
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Figure 3: User cold-start performance comparison based
on trained DCHL (a)(b) and trained DCHL + corresponding
trained users and POIs embeddings (c)(d)
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Figure 4: Hyperparameters study of the DCHL

scenario. From Figure 3(c)(d), benefiting from learned embeddings,
normal user group achieves better results compared with that with-
out trained embeddings on sparser and larger Meituan dataset. It
provides some solutions when dealing with large-scale graphs or
hypergraphs in practical industrial scenarios.

4.5 Hyperparameter Analysis

We further qualitatively analyze the impacts of layer number and
temperature in DCHL.

Impact of Layer Number. To investigate the impact of stack-
ing hypergraph convolutional layers, we conduct experiments with
number of layer in {1, 2, 3,4, 5}. As illustrated in Figure 4(a)(b), our
DCHL balances Recall@10 and NDCG@10 when stacking 3 layers
on NYC and TKY dataset, respectively. It proves that our DCHL
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can capture high-order collaborative signals effectively. When ag-
gregating and propagating on 1 layer, our DCHL achieves the best
results on Meituan dataset. The possible cause of dropping would
be the introducing of noise.

Impact of Temperature. To investigate the impact of tem-
perature 7 in controlling the strength of gradients in our con-
trastive learning, we conduct experiments with temperature 7 in
{0.1,0.3,0.5,1,3,5,10}. From Figure 4 (c)(d), our DCHL balances
Recall@10 and NDCG@10 with 7 = 0.5 on three datasets. When
7 = 0.1, the results on Meituan dataset are obviously worse than
others, for the gradients are sharp and lead to performance degra-
dation.

4.6 In-Depth Analysis of DCHL

To explore the effect of our adjusted aggregation and propagation
method of hypergraph convolutional network, we maintain other
parts of DCHL and replace each hypergraph convolutional net-
work with LightGCN [14] and HGNN+ [11] (e.g., C-LightGCN and
C-HGNN for replacement in collaborative views, and other two
views are similar to that). From Table 4, when replacing specific
hypergraph convolutional network of each view with HGNN+, per-
formances degrade in varying degrees. Performance drop clearly on
both Recall@10 and NDCG@10 when replacing collaborative hy-
pergraph convolutional network with LightGCN. The reason may
be due to the lack of high-order collaborative signals among users
and over-smoothing issue. When replacing transitional hypergraph
convolutional network with HGNN+ or LightGCN, performances
also drop and even worse with HGNN+. The two variants are de-
signed based on undirected message passing scheme and cannot be
perfectly adapted into directed transitional relationship.

Table 4: Performance comparison of different graph or
hypergraph convolutional methods w.r.t. Recall@10 and
NDCG@10

NYC TKY Meituan

R@10 N@10 | R@10 N@10 | R@10 N@10
C-HGNN+ | 0.4752 0.4002 | 0.3954 0.2997 | 0.4222 0.3188
T-HGNN+ | 0.4761 0.3979 | 0.3891 0.2982 | 0.4239 0.3180
G-HGNN+ | 0.4754 0.3985 | 0.3906 0.2967 | 0.4231 0.3115
C-LightGCN | 0.4663 0.3968 | 0.3665 0.2958 | 0.4039 0.3098
T-LightGCN | 0.4754 0.3997 | 0.3969 0.3004 | 0.4251 0.3181
G-LightGCN | 0.4732  0.3989 | 0.3966 0.2997 | 0.4214 0.3203
DCHL 0.4861 0.4017 | 0.4044 0.3078 | 0.4286 0.3220

Method

5 RELATED WORK
5.1 Next POI Recommendation

Next POI recommendation aims to suggest next suitable location
for users based on their recent visiting behaviours. Most existing
methods treat it as a sequential prediction task and adopt sequential
methods to solve, ranging from Markov chain [4] to RNN and its
variants [6, 35, 51] and recent self-attention mechanism [22, 25].
However, these sequential based methods mainly focus on model-
ing each user’s trajectory and overlook non-consecutive POIs in
the trajectory or among users. The rapid development of graph
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learning have gained great attention in next POI recommenda-
tion, ranging from graph learning [42] to hypergraph embedding
[46, 47] and more recent graph or hypergraph neural networks
[8, 15, 17-19, 21, 23, 31, 37, 38]. For example, Graph-Flashback [31]
utilizes a spatial-temporal knowledge graph to endow POI rep-
resentations and incorporates them into RNN-based methods to
capture sequential transition patterns. Lai et al. [17] leverage multi-
view spatial-temporal enhanced hypergraph network to capture
spatial-temporal information and high-order collaborative signals,
validating the strong ability of HGNN for next POI recommenda-
tion. Nonetheless, most graph or hypergraph based methods ignore
the fact that user preferences are diverse in terms of various as-
pects, resulting in suboptimal and entangled user representations.
Though few works [20, 28, 29] have adopted disentangled learning
to learn aspect-specific representations separately, they only fuse
them simply, failing to differentiate the importance of each aspect.
To tackle the challenge, we propose a multi-view disentangled hy-
pergraph learning method, combined with a novel adaptive fusion
approach, to disentangle and adaptively fuse user representations
from collaborative, transitional and geographical views.

5.2 Graph or Hypergraph Contrastive Learning
for Recommendation

Recently, contrastive learning [32, 50] has been proven effective
in addressing data sparsity issue and received considerable atten-
tion in various recommendation scenarios, such as collaborative
filtering [3, 39, 40], sequential or session recommendation [41, 43],
click-through rate prediction [13] and bundle recommendation [26].
One research line is to adapt various data augmentations (e.g., node
dropout and edge dropout) via stochastic operations on the original
data, leading to random noise perturbation [13, 39, 44]. Another
branch aims to create self-supervision signals across views under
multi-view learning or multi-channel learning paradigm [3, 29, 40].
For example, Qin et al. [29] disentangles sequential and geographi-
cal influences in a self-supervised way. Different from them, our
DCHL designs disentangled collaborative, transitional and geo-
graphical hypergraphs and creates contrastive signals across views
to capture complementary effects for next POI recommendation.

6 CONCLUSION

This paper mainly focuses on disentangling multi-view user pref-
erences that driven their behaviors and capturing crucial coop-
erative associations between views to enhance complementary
recommendation effects for next POI recommendation. To achieve
our goal, we present a novel framework Disentangled Contrastive
Hypergraph Learning (DCHL). Our DCHL performs disentangled
hypergraph learning to decouple intrinsic aspects among collabora-
tive, transitional and geographical views with adjusted aggregation
and propagation methods. Additionally, we introduce cross-view
contrastive learning with self-augmentation for capturing comple-
mentary effects. Experimental results on three datasets demonstrate
the effectiveness of our DCHL. In future, we may explore implicit
disentangled learning method to model intents behind user-POI
interactions and interpretability of user decisions and recommen-
dations for next POI recommendation.
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